RESEARCH REPORTING SERIES

Research reports of the Office of Research and Development, U.S. Environmental Protection Agency, have been grouped into nine series. These nine broad categories were established to facilitate further development and application of environmental technology Elimination of traditional grouping was consciously planned to foster technology transfer and a maximum interface in related fields. The nine series are

1. Environmental Health Effects Research
2. Environmental Protection Tectinology
3. Ecological Research

4 Environmental Monitoring
5. Socioeconomic Environmental Studies
6. Scientific and Téchnical Assessment Reports (STAR)
7. Interagency Energy Environment Research and Development

8 Special Reports
9 Miscellaneous Reports
This report has beenassigned to the ECOLOGICAL RESEARCH series. This series describes researchon the effects of pollution on humans, plant and animal species and materials. Problems are assessed for their long and shörtterm influences investigations include formation, transport, and pathway studies to determine the fate ofpollutants and thér effects This work provides the technical basis tor seting standards to minimize undesirable changes in living organisms in the aquatic terrestrial and atmospheric environments

TEMPERATURE CRITERIA FOR FRESHWATER FISH:

PROTOCOL AND PROCEDURES

```
                    by
                        William A. Brungs
        Bernard R. Jones
        Environmental Research Laboratory-Duluth
    Duluth, Minnesota }5580
```

 DULUTH, MINNESOTA 55804

DISCLAIMER

This report has been reviewed by the Environmental Research LaboratoryDuluth, U.S. Environmental Protection Agency, and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

FOREWORD
Our nation's fresh waters are vital for all animals and plants, yet our diverse uses of water - for recreation, food, energy, transportation, and industry - physically and chemically alter lakes, rivers, and streams. Such alterations threaten terrestrial organisms, as well as those living in water. The Environmental Research Laboratory in Duluth, Minnesota, develops methods, conducts laboratory and field studies, and extrapolates research findings
--to determine how physical and chemical pollution affects. aquatic life;
--to assess the effects of ecosystems on pollutants;
--to predict effects of pollutants on large lakes through use of models; and
--to measure bioaccumulation of pollutants in aquatic organisms that are consumed by other animals, including man.

This report discusses the history, procedures, and derivation of temperature criteria to protect freshwater fishes and presents numerical criteria for 34 species. It follows the general philosophical approach of the National Academy of Sciences and National Academy of Engineering in their Water Quality Criteria 1972 and is intended to make that philosophy practically useful.

Donald I. Mount, Ph.D. Director
Environmental Research Laboratory Duluth, Minnesota

Abstract

Temperature criteria for freshwater fish are expressed as mean and maximum temperatures; means control functions such as embryogenesis, growth, maturation, and reproductivity, and maxima provide protection for all life stages against lethal conditions. These criteria for 34 fish species are based on numerous field and laboratory studies, and yet for some important species the data are still insufficient to develop all the necessary criteria, Fishery managers, power-plant designers, and regulatory agencies will find these criteria useful in their efforts to protect fishery resource:

CONTENTS

Page
Foreword iii
Abstract iv
Acknowledgments vi

1. Summary and Conclusions 1
2. Introduction 2
3. The Protocol for Temperature Criteria 10
4. The Procedures for Calculating Numerical Temperature Criteria for Freshwater Fish 13
5. Examples 20
References. 25
Appendices
A. The heat and temperature section from National Academy of
Sciences and National Academy of Engineering (1973) 28
B. The thermal tables from National Academy of Sciences and
National Academy of Engineering (1973). 51
C. Fish temperature data sheets 62

ACKNOWLEDGMENTS

We would like to express our appreciation for review of this report to Dr. Charles C. Coutant (Oak Ridge National Laboratory), Mr. Carlos M. Fetterolf, Jr. (Great Lakes Fishery Commission), Mr. William L. Klein (Ohio River Valley Sanitation Commission), and Dr. Donald I. Mount, Dr. Kenneth E. F. Hokanson and Mr. J. Howard McCormick (Environmental Research LaboratoryDuluth).

SECTION 1

SUMMARY AND CONCLLSIONS

The evolution of freshwater temperature criteria has advanced from the search for a single "magic number" to the generally accepted protocol for determining mean and maximum numerical criteria based on the protection of appropriate desirable or important fish species, or both. The philosophy and protocol of the National Academy of Sciences and National Academy of Engineering (1973) were used to determine criteria for survival, spawning, embryo development, growth, and gamete maturation for species of freshwater fish, both warmwater and coldwater species.

The influence that management objectives and selection of species have on the application of temperature criteria is extremely important, especially if an inappropriate, but very temperature-sensitive, species is included. In such a case, unnecessarily restrictive criteria will be derived. Conversely, if the most sensitive important species is not considered, the resultant criteria will not be protective.

SECTION 2

INTRODUCTION

This report is intended to be a guide for derivation of temperature criteria for freshwater fish based on the philosophy and protocol presented by the National Academy of Sciences and National Academy of Engineering (1973). It is not an attempt to gather and summarize the literature on thermal effects.

Methods for determination of temperature criteria have evolved and developed rapidly during the past 20 years, making possible a vast increase in basic data on the relationship of temperature to various life stages.

One of the earliest published temperature criteria for freshwater life was prepared by the Aquatic Life Advisory Committee of the Ohio River Valley Water Sanitation Commission (ORSANCO) in 1956. These criteria were based on conditions necessary to maintain a well-rounded fish population and to sustain production of a harvestable crop in the Ohio River watershed. The committee recommended that the temperature of the receiving water:

1) Should not be raised above $34^{\circ} \mathrm{C}\left(93^{\circ} \mathrm{F}\right)$ at any place or at any time;
2) should not be raised above $23^{\circ} \mathrm{C}\left(73^{\circ} \mathrm{F}\right)$ at any place or at any time during the months of December through April; and
3) should not be raised in streams suitable for trout propagation.

McKee and Wolf (1963) in their discussion of temperature criteria for the propagation of fish and other aquatic and marine life refer only to the progress report of ORSANCO's Aquatic Life Advisory Committee (1956).

In 1967 the Aquatic Life Advisory Committee of ORSANCO evaluated and further modified their recommendations for temperature in the Ohio River watershed. At this time the committee expanded their recommendation of a $93^{\circ} \mathrm{F}$ (33.9 $9^{\circ} \mathrm{C}$) instantaneous temperature at any time or any place to include a daily mean of $90^{\circ} \mathrm{F}\left(32.2^{\circ} \mathrm{C}\right)$. This, we believe, was one of the first efforts to recognize the importance of both mean and maximum temperatures to describe temperature requirements of fishes. The 1967 recommedations also included:

1) Maximum temperature during December, January, and February should be $55^{\circ} \mathrm{F}\left(12.8^{\circ} \mathrm{C}\right)$;
2) during the transition months of March, April, October and November the temperature can be changed gradually by not more than $7^{\circ} \mathrm{F}\left(3.9^{\circ} \mathrm{C}\right)$;
3) to maintain trout habitats, stream temperatures should not exceed $55^{\circ} \mathrm{F}\left(12.8^{\circ} \mathrm{C}\right.$) during the months of October through May, or exceed $68^{\circ} \mathrm{F}\left(20.0^{\circ} \mathrm{C}\right)$ during the months of June through September; and
4) insofar as possible the temperature should not be raised in streams used for natural propagation of trout.

The National Technical Advisory Committee of the Federal Water Pollution Control Administration presented a report on water quality criteria in 1968 that was to become known as the "Green Book." This large committee included many of the members of ORSANCO's Aquatic Life Advisory Committee. The committee members recognized that aquatic organisms might be able to endure a high temperature for a few hours that could not be endured for a period of days. They also acknowledged that no single temperature requirement could be applied to the United States as a whole, or even to one state, and that the requirements must be closely related to each body of water and its fish populations. Other important conditions for temperature requirements were that (1) a seasonal cycle must be retained, (2) the changes in temperature must be gradual, and (3) the temperature reached must not be so high or so low as to damage or alter the composition of the desired population. These conditions led to an approach to criteria development different from earlier ones. A temperature increment based on the natural water temperature was believed to be more appropriate than an unvarying number. The use of an increment requires a knowledge of the natural temperature conditions of the water in question, and the size of the increment that can be tolerated by the desirable species.

The National Technical Advisory Committee (1968, p. 42) recommended:
"To maintain a well-rounded population of warmwater fishes heat should not be added to a stream in excess of the amount that will raise the temperature of the water (at the expected minimum daily flow for that month) more than $5^{\circ} \mathrm{F} .{ }^{\prime \prime}$

A casual reading of this requirement resulted in the unintended generalization that the acceptable temperature rise in warmwater fish streams was $5^{\circ} \mathrm{F}\left(2.8^{\circ}\right.$ C). This generalization was incorrect! Upon more careful reading the key word "amount" of heat and the key phrase "minimum daily flow for that month" clarify the erroneousness of the generalization. In fact, a $5^{\circ} \mathrm{F}\left(2.8^{\circ} \mathrm{C}\right)$ rise in temperature could only be acceptable under low flow conditions for a particular month and any increase in flow would result in a reduced increment of temperature rise since the amount of heat added could not be increased. For lakes and reservoirs the temperature rise limitation was $3^{\circ} \mathrm{F}\left(1.7^{\circ} \mathrm{C}\right)$ based "on the monthly average of the maximum daily temperature."

In trout and salmon waters the recommendations were that "inland trout streams, headwaters of salmon streams, trout and salmon lakes, and reservoirs containing salmonids should not be warmed," that "no heated effluents should
be discharged in the vicinity of spawning areas," and that "in lakes and reservoirs, the temperature of the hypolimnion should not be raised more than $3^{\circ} \mathrm{F}\left(1.7^{\circ} \mathrm{C}\right) . "$ For other locations the recommended incremental rise was $5^{\circ} \mathrm{F}\left(2.8^{\circ} \mathrm{C}\right)$ again based on the minimum expected flow for that month.

An important additional recommendation is summarized in the following table in which provisional maximum temperatures were recommended for various fish species and their associated biota (from FWPCA National Technical Advisory Committee, 1968).

PROVISIONAL MAXIMUM TEMPERATURES RECOMMENDED AS

COMPATIBLE WITH THE WELL-BEING OF VARIOUS SPECIES
OF FISH AND THEIR ASSOCIATED BIOTA
$93 \mathrm{~F}:$ Growth of catfish, gar, white or yellow bass, spotted . bass, buffalo, carpsucker, threadfin shad, and gizzard shad.

90 F : Growth of largemouth bass, drum, bluegill, and crappie.
$84 \mathrm{~F}:$ Growth of pike, perch, walleye, smallmouth bass, and sauger.

80 F : Spawning and egg development of catfish, buffalo, threadfin shad, and gizzard shad.

75 F : Spawning and egg development of largemouth bass, white, yellow, and spotted bass.

68 F : Growth or migration routes of salmonids and for egg development of perch and smallmouth bass.

55 F : Spawning and egg development of salmon and trout (other than lake trout).
$48 \mathrm{~F}:$ Spawning and egg development of lake trout, walleye, northern pike, sauger, and Atlantic salmon.

NOTE: Recommended temperatures for other species, not listed above, may be established if and when necessary information becomes available.

These recommendations represent one of the significant early efforts to base teitiperature criteria on the realistic approach of species and community requirements and take into account the significant biological factors of spawning, embryo development, growth, and survival.

The Federal Water Pollution Control Administration (1969a) recomended revisions in water quality criteria for aquatic life relative to the Main Stem of the Ohio River. These recommendations were presented to ORSANCO's Engineering Committee and were based on the temperature requirements of important Ohio River fishes including largemouth bass, smallmouth bass, white bass, sauger, channel catfish, emerald shiner, freshwater drum, golden redhorse, white sucker, and buffalo (species was not indicated). Temperature requirements for survival, activity, final preferred temperature; reproduction, and growth were considered. The recommended criteria were:

1. "The water temperatures shall not exceed $90^{\circ} \mathrm{F}$ ($32.2^{\circ} \mathrm{C}$) at any time or any place, and a maximum hourly average value of $86^{\circ} \mathrm{F}\left(30^{\circ} \mathrm{C}\right)$ shall not be exceeded."
2. "The temperature shall not exceed the temperature values expressed on the following table:"

AQUATIC LIFE TABLE ${ }^{a}$

	$\begin{gathered} \text { Daily mean } \\ \left({ }^{\circ} \mathrm{F}\right) \end{gathered}$	$\begin{aligned} & \text { Hourly maximum } \\ & \qquad\left(^{\circ} \mathrm{F}\right) \end{aligned}$
December-February	48	55
Early March	50	56
Late March	52	58
Early Apri1	55	60
Late April	58	62
Early May	62	64
Late May	68	72
Early June	75	79
Late June	78	82
July-September	82	86
October	75	82
November	65	72
${ }^{a}$ From: Federal Water Pollution Control Administration (1969a).		

The principal limiting fish species considered in developing these criteria was the sauger, the most temperature sensitive of the important Ohio River fishes. A second set of criteria (Federal Water Pollution Control Administration, 1969b) considered less temperature-sensitive species, and the criteria for mean temperatures were higher. The daily mean in July and September was $84^{\circ} \mathrm{F}\left(28.9^{\circ} \mathrm{C}\right)$. In addition, a third set of criteria was developed that was not designed to protect the smallmouth bass, emerald shiner, golden redhorse, or the white sucker. The July-to-September daily mean temperature criterion was $86^{\circ} \mathrm{F}\left(30^{\circ} \mathrm{C}\right)$.

The significance of the 1969 Ohio River criteria was that they were species dependent and that subsequently the criteria would probably be based upon a single species or a related group of species. Therefore, it is extremely important to select properly the species that are important otherwise the criteria will be unnecessarily restrictive. For example, if yellow perch is an extremely rare species in a water body and is the most temperaturesensitive species, it probably would be unreasonable to establish temperature criteria for this species as part of the regulatory mechanism.

In 1970 ORSANCO established new temperature standards that incorporated the recommendations for temperature criteria of the Federal Water Pollution Control Administration (1969a, 1969b) and the concept of limiting the amount of heat that would be added (National Technical Advisory Committee, 1968). The following is the complete text of that standard:
> " All cooling water from municipalities or political subdivisions, public or private institutions, or installations, or corporations discharged or permitted to flow into the Ohio River from the point of confluence of the Allegheny and Monongahela Rivers at Pittsburgh, Pennsylvania, designated as Ohio River mile point 0.0 to Cairo Point, Illinois, located at the confluence of the Ohio and Mississippi Rivers, and being 981.0 miles downstream from Pittsburgh, Pennsylyania, shall be so regulated or controlled as to provide for reduction of heat content to such degree that the aggregate heat-discharge rate from the municipality, subdivision, institution, installation or corporation, as calculated on the basis of discharge volume and temperature differential (temperature of discharge minus upstream river temperature) does not exceed the amount calculated by the following formula, provided, however, that in no case shall the aggregate heat-discharge rate be of such magnitude as will result in a calculated increase in river temperature of more than 5 degrees F :

```
Allowable heat-discharge rate (Btu/sec) = 62.4 X
    river flow (CFS) X (Ta}-\mp@subsup{T}{r}{}) X 90
```

Where:

$$
\begin{aligned}
\mathrm{T}_{\mathrm{a}}= & \text { Allowable maximum temperature (deg. F.). } \\
& \text { in the river as specified in the following } \\
& \text { table: }
\end{aligned}
$$

$\xrightarrow{\mathrm{T}}$
$\begin{array}{llll}\text { January } & 50 & \text { July }\end{array}$

March	60	September	87

April	70	October	78

May $\quad 80$ November 70
$\begin{array}{lll}\text { June } & 87 & \text { December }\end{array}$
$\mathrm{T}_{\mathrm{r}}=\begin{aligned} & \text { River temperature (daily ayerage in deg. F.) } \\ & \quad \text { upstream from the discharge }\end{aligned}$
River flow $=$ measured flow but not less than critical flow values specified in the following table:

River reach		$\begin{aligned} & \text { Critical } \\ & \text { flow } \\ & \text { in cfs } \end{aligned}$
Frora	Tio	
Pittsburgh, Penn. (mi. 0.0)	Willow Is. Dam (161.7)	6,500
Willow Is.. Dam (161.7)	Gallipolis Dam (279.2)	7,400
Gallipolis Dam (279.2)	Meldahl Dam (436.2)	2,700
Meldahl Dam (436.2)	McAlpine Dam (605.8)	11,900
McAlpine Dam (605.8)	Uniontown Dam (846.0)	14,200
Uniontown Dam (846.0)	Smithland Dam (918.5)	12,500
Smithland Dam (918.5)	Cairo Point (981.0)	48,100

Although the numerical criteria for January tbrough December are higher than those recommended by the Federal Water Pollution Control Administration, they are only used to calculate the amount of heat that can be added at the "minimum daily flow once in ten years." Additional flow would result in lower maxima since no additional heat could be added. There was also the increase of $5^{\circ} \mathrm{F}\left(2.8^{\circ} \mathrm{C}\right)$ limit that could be more stringent than the maximum temperature limit.

The next important step in the evolution of thought on temperature criteria was Water Quality Criteria 1972 (NAS/NAE, 1973), which is becoming known as the "Blue Book," because of its comparability to the Green Book (FWPCA National Technical Advisory Committee, 1968). The Blue Book is the report of the Committee on Water Quality Criteria of the National Academy of Sciences at the request of and funded by the U.S. Environmental Protection Agency (EPA). The heat and temperature section, with its recommendations and appendix data, was authored by. Dr. Charles Coutant of the Oak Ridge National Laboratory. These materials are reproduced in full in Appendix A and Appendix B in this report. A discussion and description of the Blue Book temperature criteria will be found later in this report.

The Federal Water Pollution Control Act Amendments of 1972 (Public Law 92-500) contain a section [304 (a) (1)] that requires that the administrator of the EPA "after consultation with appropriate Federal and State agencies and other interested persons, shall develop and publish, within one year after enactment of this title (and from time to time thereafter revise) criteria for water quality accurately reflecting the latest scientific knowledge (A) on the kind and extent of all identifiable effects on health and welfare including, but not limited to, plankton, fish, shellfish, wildlife, plant life, shorelines, beaches, esthetics, and recreation which may be expected from the presence of pollutants in any body of water, including ground water; (B) on the concentration and dispersal of pollutants or their byproducts, through biological, physical, and chemical processes; and (C) on the effects of pollutants on biological community diversity, productivity, and stability, including information on the factors affecting rates of eutrophication and rates of organic and inorganic sedimentation for varying types of receiving waters."

The U.S. Environmental Protection Agency (1976) has published Quality Criteria for Water as a response to the Section 304 (a) (1) requirements of PL 22-500. That approach to the determination of temperature criteria for freshwater fish is essentially the same as the approach recomended in the Blue Book (NAS/NAE, 1973). The EPA criteria report on temperature included numerical criteria for freshwater fish species and a nomograph for winter temperature criteria. These detailed criteria were developed according to the protocol in the Blue Book, and the procedures used to develop those criteria will be discussed in detail in this report.

The Great Lakes Water Quality Agreement (1972) between the United States of America and Canada was signed in 1972 and contained a specific water quality objective for temperature. It states that "There should be no change that would adversely affect any local or general use of these waters." The

International Joint Commission was designated to assist in the implementation of this agreement and to give advice and recommendations to both countries on specific water quality objectives. The International Joint Commission committees assigned the responsibility of developing these objectives have recommended temperature objectives for the Great Lakes based on the "Blue Book" approach and are in the process of refining and completing those objectives for consideration by the commission before submission to the two countries for implementation.

SECTION 3

THE PROTOCOL FOR TEMPERATURE CRITERIA

This section is a synthesis of concepts and definitions from Fry et al. (1942, 1946), Brett (1952, 1956), and the NAS/NAE (1973).

The lethal threshold temperatures are those temperatures at which 50 percent of a sample of individuals would survive indefinitely after acclimation at some other temperature. The majority of the published literature (Appendix B) is calculated on the basis of 50 percent survival. These lethal thresholds are commonly referred to as incipient lethal temperatures. Since organisms can be lethally stressed by both rising and falling temperatures, there are upper incipient lethal temperatures and lower incipient lethal temperatures. These are determined by removing the organisms from a temperature to which they are acclimated and instantly placing them in a series of other temperatures that will typically result in a range in survival from 100 to 0 percent. Acclimation can require up to 4 weeks, depending upon the magnitude of the difference between the temperature when the fish were obtained and the desired acclimation temperature. In general, experiments to determine incipient lethal temperatures should extend until all the organisms in any test chamber are dead or sufficient time has elapsed for death to have occurred. The ultimate upper incipient lethal temperature is that beyond which no increase in lethal temperature is accomplished by further increase in acclimation temperature. For most freshwater fish species in temperate latitudes the lower incipient lethal temperatures will usually end at $0^{\circ} C$, being limited by the freezing point of water. However, for some important species, such as threadfish shad in freshwater and menhaden in seawater, the lower incipient lethal temperature is higher than $0^{\circ} \mathrm{C}$.

As indicated earlier, the heat and temperature section of the Blue Book and its associated appendix data and references have been reproduced in this report as Appendix A and Appendix B. The following discussion will briefly summarize the various types of criteria and provide some additional insight into the development of numerical criteria. The Blue Book (Appendix A) also describes in detail the use of the criteria in relation to entrainment.

MAXIMUM WEEKLY AVERAGE TEMPERATURE

For practical reasons the maximum weekly average temperature (MWAT) is the mathematical mean of multiple, equally spaced, daily temperatures over a 7 -day consecutive period.

To maintain growth of aquatic organisms at rates necessary for sustaining actively growing and reproducing populations, the MWAT in the zone normally inhabited by the species at the season should not exceed the optimum temperature plus one-third of the range between the optimum temperature and the ultimate upper incipient lethal temperature of the species:

WAT for growth $=$ optimum temperature $+\frac{\begin{array}{c}\text { ultimate upper incipient } \\ \text { lethal temperature }\end{array}}{3} \begin{gathered}\text { optimum } \\ \text { temperature }\end{gathered}$
The optimum temperature is assumed to be the optimum for growth, but other physiological optima may be used in the absence of growth data. The MWAT need not apply to accepted mixing zones and must be applied with adequate understanding of the normal seasonal distribution of the important species.

For Reproduction
The MWAT for reproduction must consider several factors such as gonad growth and gamete maturation, potential blocking of spawning migrations, spawning itself, timing and synchrony with cyclic food sources, and normal patterns of gradual temperature changes throughout the year. The protection of reproductive activity must take into account months during which these processes normally occur in specific water bodies for which criteria are being developed.

For Winter Survival

The MWAT for fish survival during winter will apply in any area in which fish could congregate and would include areas such as unscreened discharge channels. This temperature limit should not exceed the acclimation, or plume, temperature (minus a $3.6^{\circ} \mathrm{F}\left(2.0^{\circ} \mathrm{C}\right)$ safety factor) that raises the lower lethal threshold temperature above the normal ambient water temperature for that season. This criterion will provide protection from fish kills caused by rapid changes in temperature due to plant shutdown or movement of fish from a heated plume to ambient temperature.

SHORT-TERM EXPOSURE TO EXTREME TEMPERATURE

It is well established that fish can withstand short exposure to temperatures higher than those acceptable for reproduction and growth without significiant adverse effects. These exposures should not be too lengthy or frequent or the species could be adversely affected. The length of time that 50 percent of a population will survive temperature above the incipient lethal temperature can be calculated from the following regression equation:

$$
\begin{aligned}
& \log \text { time }(\min)=a+b\left(\text { temperature in }{ }^{\circ} \mathrm{C}\right) \\
& \text { or } \\
& \text { temperature }\left({ }^{\circ} \mathrm{C}\right)=(\log \text { time }(\min)-a) / b
\end{aligned}
$$

The constants "a" and "b" are for intercept and slope and will be discussed later. Since this equation is based on 50 percent survival, a $3.6^{\circ} \mathrm{F}$ ($2.0^{\circ} \mathrm{C}$) reduction in the upper incipient lethal temperature will provide the safety factor to assure no deaths.

For those interested in more detail or the rationale for these general criteria, Appendices A and B should be read thoroughly. In addition, Appendix A contains a fine discussion of a procedure to evaluate the potential thermal impact of aquatic organisms entrained in cooling water or the discharge plume, or both.

SECTION 4

THE PROCEDURES FOR CALCULATING NUMERICAL

TEMPERATURE CRITERIA FOR FRESHWATER FISH

MAXIMUM WEEKLY AVERAGE TEMPERATURE

The necessary minimum data for the determination of this criterion are the physiological optimum temperature and the ultimate upper incipient lethal temperature, The latter temperature represents the "breaking point" between the highest temperatures to which an animal can be acclimated and the lowest of the extreme upper temperatures that will kill the warm-acclimated organism. Physiological optima can be based on performance, metabolic rate, temperature preference, growth, natural distribution, or tolerance. However, the most sensitive function seems to be growth rate, which appears to be an integrator of all physiological responses of an organism. In the absence of data on optimum growth, the use of an optimum for a more specific function related to activity and metabolism may be more desirable than mot developing any growth criterion at all.

The MWAT's for growth were calculated for fish species for which appropriate . data were available (Table 1). These data were obtained from the fish temperature data in Appendix C. These data sheets contain the majority of thermal effects data for about 34 species of freshwater fish and the sources of the data, Some subjectivity is inevitable and necessary because of variability in published data resulting from differences in age, day length, feeding regime, or methodology. For example, the data sheet for channel catfish (Appendix C) includes four temperature ranges for optimum growth based on three published papers. It would be more appropriate to use data for growth of juveniles and adults rather than larvae. The middle of each range for juvenile channel catfish growth is 29° and $30^{\circ} \mathrm{C}$. In this instance $29^{\circ} \mathrm{C}$ is judged the best estimate of the optimum. The highest incipient lethal temperature (that would approximate the ultimate incipient lethal temperature) appearing in Appendix C is $38^{\circ} \mathrm{C}$, $\overline{\mathrm{By}}$ using the previous formula for the MWAT for growth, we obtain

$$
29^{\circ} \mathrm{C}+\frac{\left(38-29^{\circ} \mathrm{C}\right)}{3}=32^{\circ} \mathrm{C}
$$

The temperature criterion for the MWAT for growth of channel catfish would be $32^{\circ} \mathrm{C}$ (as appears in Table 1).

TABLE 1. TEMPERATURE CRITERIA FOR GROWTH AND SURVIVAL OF SHORT EXPOSURES
(24 HR) OF JUVENILE AND ADULT FISH DURING THE SUMMER (${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$)

Species	Maximum weekly average temperature for growth ${ }^{\text {a }}$	Haximum temperature for b survival of short exposure
Alewife	--	--
Aclantic salmon	20 (68)	23 (73)
Bigmouth buffalo	-	--
Black crapple	27 (81)	--
8luegill .	32 (90)	35 (95)
Brook trout	19 (66)	24 (75)
Brown bullhead	--	- --
Brown trout	17 (63)	24 (75)
Carp . ${ }^{\text {c }}$	-	--
Channel catfish	32 (90)	35 (95)
coho salmon	18 (64)	24 (75)
Ererald shiner	30 (86)	\cdots
Fathead minnow	--	--
Freshwater drum	--	--
Lake herring (cisco)	17 (63) $^{\text {c }}$	25 (77)
Lake whitefish*	--	--
Lake trout	--	--
Largenouth bass	32 (90)	34 (93)
Norchern pike	28 (82)	: 30 (86)
Pumpkinseed	--	--
Rainbow smelt	--	--
Rainbow trout	19 (66)	24 (75)
Sauger	25 (77)	--
Smallmputh bass	29 (84)	-
Sabllmouth buffalo	- --	--
Sockeye aminon	18 (64)	22 (72)
Striped bass	--	--
Threadfin shad	--	--
Walleye	25 (71)	--
Whice bass	--	--
White crappie	28 (82)	--
White perch	--	--
White aucker	$28 \quad(82){ }^{\text {c }}$	--
Yellow perch	29 (84)	--

[^0]
SHORT-TERM MAXIMUM DURING GROWTH SEASON

In addition to the MWAT, maximum temperature for short exposure will protect against potential lethal effects. We have to assume that the incipient lethal temperature data reflecting 50 percent survival necessary for this calculation would be based on an acclimation temperature near the MWAT for growth. Therefore, using the data in Appendix B for the channel catfish, we find four possible data choices near the MWAT of $32^{\circ} \mathrm{C}$ (again it is preferable to use data on juveniles or adults):

Acclimation temperature $\left({ }^{\circ} \mathrm{C}\right)$	\underline{a}	\underline{b}	
30		32.1736	-0.7811
34	26.4204	-0.6149	
30	17.7125	-0.4058	
.35	28.3031	-0.6554	

The formula for calculating the maximum for short exposure is:

$$
\text { temperature }\left({ }^{\circ} \mathrm{C}\right)=(\log \text { time }(\min)-a) / b
$$

To solve the equation we must select a maximum time limitation on this maximum for short exposure. Since the MWAT is a weekly mean temperature an appropriate length of time for this limitation for short exposure would be 24 hr without risking violation of the MWAT.

Since the time is fixed at $24 \mathrm{hr}(1,440 \mathrm{~min})$, we need to solve for temperature by using, for example, the above acclimation temperature of $30^{\circ} \mathrm{C}$ for which $a=32.1736$ and $b=-0.7811$.

$$
\begin{aligned}
& \text { temperature }\left({ }^{\circ} \mathrm{C}\right)=\frac{\log 1,440-\mathrm{a}}{\mathrm{~b}} \\
& \text { temperature }\left({ }^{\circ} \mathrm{C}\right)=\frac{3.1584-32.1736}{-0.7811}=\frac{-29.0152}{-0.7811}=37.146
\end{aligned}
$$

Upon solving for each of the four data points we obtain $37.1^{\circ}, 37.8^{\circ}, 35.9^{\circ}$, and $38.4^{\circ} \mathrm{C}$. The average would be $37.3^{\circ} \mathrm{C}$, and after subtracting the $2^{\circ} \mathrm{C}$ safety factor to provide 100 percent survival, the short-term maximum for channel catfish would be $35^{\circ} \mathrm{C}$ as appears in Table 1.

MAXIMUM WEEKLY AVERAGE TEMPERATURE FOR SPAẄNING

From the data sheets in Apendix C one would use either the optimum temperature for spawning or, if that is not available, the middle of the range of temperatures for spawning. Again, if we use the channel catfish äs añ example, the MWAT for spawning would be $27^{\circ} \mathrm{C}$ (Table 2): Since spawning may occur over a period of a few weeks or months in a particular water body and only a MWAT for optimum spawning is estimated, it would be logical to use that optimium for the median time of the spawning season. The MWAT for the next earlier month

TABLE 2. TEMPERATURE CRITERIA FOR SPAWNING AND EMBRYO SURVIVAL OF SHORT EXPOSURES DURING THE SPAWNING SEASON (${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$)

Speciea	Maximum weekly average cemperature for sparring ${ }^{\text {a }}$	Max imum temperature for embryo survival ${ }^{\text {b }}$

Alewife	22	(72)	28	$(82){ }^{\text {c }}$
Atlantic salmon	5	(41)	11	(52)
Bigmouth buffalo	17	(63)	27	$(81)^{c}$
Black crapple	17	(63)	20	$(68)^{c}$
Bluegili	25	(77)	34	(93)
Brook trout	9	(48)	13	(5s)
Brown bullhead	24	(75)	27	(81)
Brown trout	8	(46)	13	(59)
Carp	21°	(70)	33	(91)
Channel catfish	27	(81)	29	$(84)^{\text {c }}$
Coho saimon	10	(50)	13	$(55){ }^{\text {c }}$
Eacrald shiner	24	(75)	28	$(82)^{c}$
Fathead minnow	24	(75)	30	(86)
Freshwater drum	21	(70)	26	(79)
Lake herring (cisco)	3	(37)	9	(46)
Lake whitefish	5	(41)	10	$(30)^{c}$
Lake trout	9	(48)	14	(57)
Largemouth base	21	(70)	27	$(81)^{c}$
Northern pike	11	(52)	19	(66)
Punpkinsieed	25	(71)	29	$(84)^{c}$
Rainbow smelt	8	(46)	15	(59)
Rainbow trout	9	(48)	13	(55)
Sauger	12	(54)	18	(6a)
Smallmouth bass	17	(63)	23	$(73)^{c}$
Stoallmouth buffalo	21	(70)	28	$(82)^{\text {c }}$
Sockeye salmon	10	(50)	13	(55)
Striped bas:	18	(64)	24	(75)
Threadfin shad	19	(66)	34	(93)
Walleye	8	(46)	17	$(63){ }^{\text {c }}$
White bass	17	(63)	26	(79)
White crappie	18	(64)	23	(73)
White perch	is	(59)	20	$(68)^{c}$
White sucker	10	(50)	20	(68)
Yellow perch	12	(54)	20	(68)

[^1]could approximate the lower temperature of the range in spawning temperature, and the MWAT for the last month of a 3 -month spawning season could approximate the upper temperature for the range. For example, if the channel catfish spawned from April to June the MWAT's for the 3 months would be approximately 21°, 27°, and $29^{\circ} \mathrm{C}$. For fall spawning fish species the pattern or sequence of temperatures would be reversed because of naturally declining temperatures during their spawning season.

SHORT-TERM MAXIMUM DURING SPAWNING SEASON

If spawning season maxima could be determined in the same manner as those for the growing season, we would be using the time-temperature equation and the Appendix B data as before. However, growing season data are based usually on survival of juvenile and adult individuals. Egg-incubation temperature requirements are more restrictive (lower), and this biological process would not be protected by maxima based on data for juvenile and adult fish. Also, spawning itself could be prematurely stopped if those maxima were achieved. For most species the maximum spawning temperature approximates the maximum successful incubation temperature. Consequently, the short-term maximum temperature should preferably be based on maximum incubation temperature for successful embryo survival, but the maximum temperature for spawning is an acceptable alternative. In fact, the higher of the two is probably the preferred choice as variability in available data has shown discrepancies in this relationship for some species.

For the channel catfish (Appendix C) the maximum reported incubation temperature is $28^{\circ} \mathrm{C}$, and the maximum reported spawning temperature is $29^{\circ} \mathrm{C}$. Therefore, the best estimate of the short-term survival of embryos would be $29^{\circ} \mathrm{C}$ (Table 2).

MAXIMUM WEEKLY AVERAGE TEMPERATURE FOR WINTER

As discussed earlier the MWAT for winter is designed usually to prevent fish deaths in the event the water temperature drops rapidly to an ambient condition. Such a temperature drop could occur as the result of a power-plant shutdown or a movement of the fish itself. These MWAT's are meant to apply wherever fish can congregate, even if that is within the mixing zone.

Yellow perch require a long chill period during the winter for optimum egg maturation and spawning (Appendix A). However, protection of this species would be outside the mixing zone. In addition, the embryos of fall spawning fish such as trout, salmon, and other related species such as cisco require low incubation temperatures. For these species also the MWAT during winter would have to consider embryo survival, but again, this would be outside the mixing zone. The mixing zone, as used in this report, is that area adjacent to the discharge in which receiving system water quality standards do not apply; a thermal plume therefore is not a mixing zone.

With these exceptions in mind, it is unlikely that any signficant effects on fish populations would occur as long as death was prevented.

In many instances growth could be enhanced by controlled winter heat addition, but inadequate food may result in poor condition of the fish.

There are fewer data for lower incipient lethal temperatures than for the previously discussed upper incipient lethal temperatures. Appendix B contains lower incipient lethal temperature data for only about 20 freshwater fish species, less than half of which are listed in Tables 1 and 2. Consequent: the available data were combined to calculate a regression line (Figure 1) which gives a generalized MWAT for winter survival instead of the species specific approach used in the other types of criteria.

All the lower incipient lethal temperature data from Appendix C for freshwater fish species were used to calculate the regression line, which had a slope of 0.50 and a correlation coefficient of 0.75 . This regression line was then displaced by approximately $2.5^{\circ} \mathrm{C}$ since it passed through the middle of the data and did not represent the more sensitive species. This new line on the edge of the data array was then displaced by a $2^{\circ} \mathrm{C}$ safety factor, the same factor discussed earlier, to account for the fact that the original data points were for 50 percent survival and the $2^{\circ} \mathrm{C}$ safety factor would result in 100 percent survival. These two adjustments in the original regression line therefore result in a line (Figure IL that should insure no more than negligible mortality of any fish spectes. At lower acclimation temperatures the coldwater species were different from the warmwater species, and the resulta criterion takes this into account.

If fish can congregate in an area close to the discharge point, this criterion could be a limit on the degree rise permissible at a particular site. Obviously, if there is a screened discharge channel in which some cooling occurs, a higher initial discharge temperature could be permissible to fish.

An example of the use of this criterion (as plotted in the nomograph, Figure 1) would be a situation in which the ambient water temperature is 10° C , and the MWAT, where fish could congregate, is $25^{\circ} \mathrm{C}$, a difference of 15° C. At a lower ambient temperature of about $2.5^{\circ} \mathrm{C}$, the MWAT would be $10^{\circ} \mathrm{C}$, a $7.5^{\circ} \mathrm{C}$ difference.

Figure 1. Nomograph to determine the maximum weekly average temperature of plumes for various ambient temperatures, ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$.

SECTION 5

EXAMPLES

Again, because precise thermal-effects data are not available for al. species,. we would like to emphasize the necessity for subjective decisions based on common-sense knowledge of existing aquatic systems. For some fish species for which few or only relatively poor data are available, subjectivity becomes important. If several qualified people were to calcula various temperature criteria for species for which several sets of high qual data were available, it is unlikely that they would be in agreement in all instances.

The following examples for warmwater and coldwater species are presente only as examples and are not at all intended to be water-body-specific recommendations. Local extenuating circumstances may warrant differences, o the basic conditions of the examples may be slightly unrealistic. More precise estimates of principal spawning and growth seasons should be available from the local state fish departments.

EXAMPLE 1

Tables 1 and 2, Figure 1, and Appendix C are the principal data sources for the criteria derived for this example. The following water-body-specifi data are necessary and in this example are hypothetical:

1. Species to be protected by the criteria: channel catfish, largemc bass, bluegill, white crappie, freshwater drum, and bigmouth buffalo.
2. Local spawning seasons for these species: April to June for the white crappie and the bigmouth buffalo; other species, May to July.
3. Normal ambient winter temperature: $5^{\circ} \mathrm{C}$ in December and January; $10^{\circ} \mathrm{C}$ in November, February, and March.
4. The principal growing season for these fish species: July througf September.
5. Any local extenuating circumstances should be incorporated into th criteria as appropriate. Some examples would be yellow perch gamete maturation in the winter, very temperature-sensitive endangered species, or important fish-food organisms that are very temperature sensitive. For the example we will have no extenuating circumstances.

In some instances the data will be insufficient to determine each necessary criterion for each species. Estimates must be made based on available species-specific data or by extrapolation from data for species with similar requirements for which adequate data are available. For instance, this example includes the bigmouth buffalo and freshwater drum for which no growth or short-term summer maxima are available (Table l). One would of necessity have to estimate that the summer criteria would not be lower than that for the white crappie, which has a spawning requirement as low as the other two species.

The choice of important fish species is very critical. Since in this example the white crappie is as temperature sensitive as any of the species, the maximum weekly average temperature for summer growth is based on the white crappie. Consequently, this criterion would result in lower than optimal conditions for the channel catfish, bluegill, and largemouth bass. An alternate approach would be to develop criteria for the single most important species even if the most sensitive is not well protected. The choice is a socioeconomic one.

Before developing a set of criteria such as those in Table 3, the material material in Tables 1 and 2 should be studied for the species of concern. It is evident that the lowest optimum temperature for summer growth for the species for which data are available would be for the white crappie ($28^{\circ} \mathrm{C}$). However, there is no maximum for short exposure since the data are not available (Appendix C). For the species for which there are data, the lowest maximum for short exposure is for the largemouth bass $\left(34^{\circ} \mathrm{C}\right)$. In this example we have all the necessary data for spawning and maximum for short exposure for embryo survival for all species of concern (Table 2).

During the winter, criteria may be necessary both for the mixing zone as well as for the receiving water. Receiving-water criteria would be necessary if an important fish species were known to have gamete-maturation requirements like the yellow perch, or embryo-incubation requirements like trout, salmon, cisco, etc. In this example there is no need for receiving-system water criteria.

At this point, we are ready to complete Table 3 for Example 1.

EXAMPLE 2

All of the general concerns and data sources presented throughout the discussion and derivation of Example 1 will apply here.

1. Species to be protected by the criteria: rainbow and brown trout and the coho salmon.

2, Local spawning seasons for these species: November through January for rainbow trout; and November through December for the brown trout and coho salmon.
3. Normal ambient winter temperature: $2^{\circ} \mathrm{C}$ in November through February; $5^{\circ} \mathrm{C}$ in October, March, and April.

TABLE 3. TEMPERATURE CRITERIA FOR EXAMPLE 1

Month	Maximum weekly average temperature, (${ }^{(} \mathrm{C}\left(^{\circ} \mathrm{F}\right) 2$		
	Receiving water	Heated plume	Decision basis
January	$\cdots{ }^{\text {a }}$	15(59)	Figure 1
February	-- ${ }^{\text {a }}$	25(77)	Figure 1
March	$-{ }^{\text {a }}$	25(77)	Figure 1
April	$18(64)^{\text {b }}$	--	White crapple spawning
May	21 (70)	--	Largemouth bass spawning
June	25(77)	-	Bluegill spawning and white crapple growth
Juiy	- 28 (82)	-	White crappie growth
August	28(82)	-	White crappie growth
September	28(82)	--	White crapple growth
October	$21(70)$	--	Normal gradual seasonal decline
November	$\sim^{\text {a }}$	25(77)	Figure 1
December	-- ${ }^{\text {a }}$	15(59)	Figure 1

Month	Short-term maximum	Decialon basis
January	None needed	Control by MHAT in plume
February	None needed	Control by MWAT in plume
March	None needed	Control by MNAT in plume
April	26(79)	Largemouth basa ${ }^{b}$ survival (estimated)
May	29(84)	Largemouth bass ${ }^{\text {b }}$ survival (estimated)
June	34 (93)	Largemouth bass. ${ }^{\text {b }}$ survival
July	34(93)	Largemouth bass ${ }^{\text {b }}$ survival
August	34 (93)	Largemouth bass ${ }^{\text {b }}$ survival
September	34(93)	Largemouth bass ${ }^{\text {b }}$ survival
October	29 (84)	Largemouth bess ${ }^{\text {b }}$ survival (estinated)
November	None needed	Control by mhat in plume
December	None needed	Control by MWAT in plume

[^2]4. The principal growing season for these fish species; June through September.
5. Consider any local extenuating circumstances: There are none in this example.

At this point, we are ready to complete Table 4 for Example 2.

TABLE 4. TEMPERATURE CRITERIA FOR EXAMPLE 2

REFERENCES

Brett, J. R. 1952. Temperature tolerance in young Pacific salmon, genus Oncorhynchus. J. Fish, Res. Board Can. 9:265-323. - 1956. Some principles in the thermal requirements of fishes. Quart. Rev. Biol, 31:75-87.

Federal Water Pollution Control Administration. National Technical Advisory Committee. 1968. Water Quality Criteria. U.S, Department of the Interior, Washington, D.C: 245 p.

Federal Water Pollution Control Administration. 1969a. FWPCA Presentations ORSANCO Engineering Committee. U.S. Department of the Interior, Sixty-Ninth Meeting, Cincinnati, Ohịo (May 13-14, 1269).

1969b. FWPCA Presentations ORSANCO Engineering Committee. U.S. Department of the Interior, Seventieth Meeting, Cincinnati, Ohio (September 10, 1969).

Fry, F. E. J., J. R. Brett, and G. H. Clawson. 1942. Lethal limits of temperature for young goldfish. Rey. Can, Biol. 1:50-56.

Fry, F. E. J., J. S. Hart, and K, F. Walker. 1946. Lethal temperature relations for a sample of young speckled trout, Salvelinus fontinalis. Ontario Fish. Res. Lab, Pub, No. 66. Univ. Toronto Press, Toronto, Can. pp. 2-35.

Great Lakes Water Quality Agreement. 1972. With Annexes and Texts and Terms of Reference, Between the United States of America and Canada. TS 548;36Stat.2448. (April 15, 1972). 69 p.

McKee, J. E., and H. W. Wolf. 1963. Water Quality Criteria I2nd ed.]. The Resources Agency of California Pub. No. 3-A., State Water Quality Control Board, Sacramento, Calif. 548 p.

National Academy of Sciences and National Academy of Engineering (NAS/NAE). 1973. Water Quality Criteria 1972. A Report of the Committee on Water Quality Criteria. U.S. Environmental Protection Agency Pub. No. EPA-R3-73-033. Washington, D.C. 553 p.

Ohio River Valley Water Sanitation Commission (ORSANCO). Aquatic Life Advisory Committee. 1956. Aquatic life water quality criteria ---second progress report. Sew. Ind. Wastes 28:678-690.
\qquad . 1967. Aquatic life water quality criteria --fourth progress report. Env. Sci. Tech. 1:888-897.

- 1970. Notice of requirements (standards number 1-70 and 2-70) pertaining to sewage and industrial wastes discharged to the Ohio River. ORSANCO, Cincinnati, Ohio.

Public Law 92-500. 1972. An Act to Amend the Federal Water Pollution Control Act. 92nd Congress, S. 2770, October 18, 1972. 86 STAT. 816 through 86 STAT 904.
U.S. Environmental Protection Agency. 1976. Quality Criteria for Water. Office of Water and Hazardous Materials, Washington, D.C. EPA 440/9-76-023, 501 p.

APPENDICES

Page

A Heat and Temperature (from the National Academy of Sciences and National Academy of Engineering, 1973) 28

B Thermal Tables (from the National Academy of Sciences and National Academy of Engineering, 1973).51
C Fish Temperature Data (${ }^{\circ} \mathrm{C}$) 62

APPENDIX A*

heat and temperature

Living organisms do not respond to the quantity of heat but to degrees of temperature or to temperature changes caused by transfer of heat. The importance of temperature to acquatic organisms is well known, and the composition of aquatic communities depends largely on the temperature characteristics of their environment. Organisms have upper and lower thermal tolerance limits, optimum temperatures for growth, preferred temperatures in thermal gradients, and temperature limitations for migration, spawning, and egg incubation. Temperature also affects the physical environment of the aquatic medium, (e.g., viscosity, degree of ice cover, and oxygen capacity. Therefore, the composition of aquatic communities depends largely on temperature characteristics of the environment. In recent years there has been an accelerated demand for cooling waters for power stations that release large quantities of heat, causing, or threatening to cause, either a warming of rivers, lakes, and coastal waters, or a rapid cooling when the artificial sources of heat are abruptly terminated. For these reasons, the environmental consequences of temperature changes must be considered in assessments of water quality requirements of aquatic organisms.

The "'natural" temperatures of surface waters of the United States vary from 0 C to over 40 C as a function of latitude, altitude, season, time of day, duration of flow, depth, and many other variables. The agents that affect the natural temperature are so numerous that it is unlikely that two bodies of water, even in the same latitude, would have exactly the same thermal characteristics. Moreover, a single aquatic habitat typically does not have uniform or consistent thermal characteristics. Since all aquatic organisms (with the exception of aquatic mammals and a few large, fast-swimming fish) have body temperatures that conform to the water temperature, these natural variations create conditions that are optimum at times, but are generally above or below optima for particular physiological, behavioral, and competitive functions of the species present.

Because significant temperature changes may affect the composition of an aquatic or wildlife community, an induced change in the thermal characteristics of an eco-
system may be detrimental. On the other hand, altered thermal characteristics may be beneficial, as evidenced in most fish hatchery practices and at other aquacultural facilities. (See the discussion of Aquaculture in Section IV.)

The general difficulty in developing suitable criteria for temperature (which would limit the addition of heat) lies in determining the deviation from "natural" temperature a particular body of water can experience without suffering adverse effects on its biota. Whatever requirements are suggested, a "natural" seasonal cycle must be retained, annual spring and fall changes in temperature must be gradual, and large unnatural day-to-day fluctuations should be avoided. In view of the many variables, it seems obvious that no single temperature requirement can be applied uniformly to continental or large regional areas; the requirements must be closely related to each body of water and to its particular community of organisms, especially the important species found in it. These should include invertebrates, plankton, or other plant and animal life that may be of importance to food chains or otherwise interact with species of direct interest to man. Since thermal requirements of various species differ, the social choice of the species to be protected allows for different "levels of protection" among water bodies as suggested by Doudoroff and Shumway (1970) ${ }^{272}$ for dissolved oxygen criteria. (See Dissolved Oxygen, p. 131.) Although such decisions clearly transcend the scientific judgments needed in establishing thermal criteria for protecting selected species, biologists can aid in making them. Some measures useful in assigning levels of importance to species are: (1) high yield to commercial or sport fisheries, (2) large biomass in the existing ecosystem (if desirable), (3) important links in food chains of other species judged important for other reasons, and (4) "endangered" or unique status. If it is desirable to attempt strict preservation of an existing ecosystem, the most sensitive species or life stage may dictate the criteria selected.

Criteria for making recommendations for water temperature to protect desirable aquatic life cannot be simply a maximum allowed change from "natural temperatures." This is principally because a change of even one degree from
an ambient temperature has varying significance for an organism, depending upon where the ambient level lies within the tolerance range. In addition, historic temperature records or, alternatively, the existing ambient temperature prior to any thermal alterations by man are not always reliable indicators of desirable conditions for aquatic populations. Multiple developments of water resources also change water temperatures both upward (e.g., upstream power plants or shallow reservoirs) and downward (e.g., deepwater releases from large reservoirs), so that "ambient" and "natural" are exceedingly difficult to define at a given point over periods of several years.

Criteria for temperature should consider both the multiple thermal requirements of aquatic species and requirements for balanced communities. The number of distance requirements and the necessary values for each require periodic reexamination as knowledge of thermal effects on aquatic species and communities increases. Currently definable requirements include:

- maximum sustained temperatures that are consistent with maintaining desirable levels of productivity;
- maximum levels of metabolic acclimation to warm temperatures that will permit return to ambient winter temperatures should artificial sources of heat cease;
- temperature limitations for survival of brief exposures to temperature extremes, both upper and lower;
- restricted temperature ranges for various stages of reproduction, including (for fish) gonad growth and gamete maturation, spawning migration, release of gametes, development of the embryo, commencement of independent feeding (and other activities) by juveniles; and temperatures required for metamorphosis, emergence, and other activities of lower forms;
- thermal limits for diverse compositions of species of aquatic communities, particularly where reduction in diversity creates nuisance growths of certain organisms, or where important food sources or chains are altered;
- thermal requirements of downstream aquatic life where upstream warming of a cold-water source will adversely affect downstream temperature requirements.

Thermal criteria must also be formulated with knowledge of how man alters temperatures, the hydrodynamics of the changes, and how the biota can reasonably be expected to interact with the thermal regimes produced. It is not sufficient, for example, to define only the thermal criteria for sustained production of a species in open waters, because large numbers of organisms may also be exposed to thermal changes by being pumped through the condensers and mixing zone of a power plant. Design engineers need
particularly to know the biological limitations to their design options in such instances. Such considerations may reveal nonthermal impacts of cooling processes that may outweigh temperature effects, such as impingement of fish upon intake screens, mechanical or chemical damage to zooplankton in condensers, or effects of altered current patterns on bottom fauna in a discharge area. The environmental situations of aquatic organisms (e.g., where they are, when they are there, in what numbers) must also be understood. Thermal criteria for migratory species should be applied to a certain area only when the species is actually there. Although thermal effects of power stations are currently of great interest, other less dramatic causes of temperature change including deforestation, stream channelization, and impoundment of flowing water must be recognized.

DEVELOPMENT OF CRITERIA

Thermal criteria necessary for the protection of species or communities are discussed separately below. The order of presentation of the different criteria does not imply priority for any one body of water. The descriptions define preferred methods and procedures for judging thermal requirements, and generally do not give numerical values (except in Appendix (I-C). Specific values for all limitations would require a biological handbook that is far beyond the scope of this Section. The criteria may seem complex, but they represent an extensively developed framework of knowledge about biological responses. (A sample application of these criteria begins on page 166, Use of Temperature Criteria.)

TERMINOLOGY DEFINED

Some basic thermal responses of aquatic organisms will be referred to repeatedly and are defined and reviewed briefly here. Effects of heat on organisms and aquatic communities have been reviewed periodically (e.g., Bullock 1955, ${ }^{259}$ Brett 1956; ${ }^{253}$ Fry 1947, ${ }^{276} 1964,{ }^{278} 1967 ;{ }^{279}$ Kinne 1970^{266}). Some effects have been analyzed in the context of thermal modification by power plants (Parker and Krenkel 1969;308 Krenkel and Parker 1969; ${ }^{298}$ Cairns 1968; ;261 Clark 1969;263 and Coutant 1970c ${ }^{269}$). Bibliographic information is available from Kennedy and Mihursky (1967), ${ }^{294}$ Raney and Menzel (1969), ${ }^{313}$ and from annual reviews published by the Water Pollution Control Federation (Coutant 1968, ${ }^{265} 1969,{ }^{266} 1970$ a, ${ }^{267} 1971^{279}$).

Each species (and often each distinct life-stage of a species) has a characteristic tolerance range of temperature as a consequence of acclimations (internal biochemical adjustments) made while at previous holding temperature (Figure III-2; Brett 1956 ${ }^{233}$). Ordinarily, the ends of this range, or the lethal thresholds, are defined by survival of 50 per cent of a sample of individuals. Lethal thresholds typically are referred to as "incipient lethal temperatures," and temperature beyond these ranges would be considered "ex-
treme." The tolerance range is adjusted upward by acclimation to warmer water and downward to cooler water, although there is a limit to such accommodation. The lower end of the range usually is at zero degrees centigrade (32 F) for species in temperate latitudes (somewhat less for saline waters), while the upper end terminates in an "ultimate incipient lethal temperature" (Fry et al. 1946 ${ }^{2811}$). This ultimate threshold temperature represents the "breaking point" between the highest temperatures to which an animal can be acclimated and the lowest of the extreme temperatures that will kill the warm-acclimated organism. Any rate of temperature change over a period of minutes

After Brett 1960254

FIGURE III-2-Upper and lower lethal temperatures for young sockeye salmon (Oncorhynchus nerka) plotted to show the zone of tolerance. Within this zone two other zones are represented to illustrate (1) an area sovond which growth would be poor to none-at-all under the influence of the loading effect of metabolic demand, and (2) an area beyond which temperature is likely to inhibit normal reproduction.

After Brett: 1952252

FIGURE III-3-Median resistance times to high temperatures among young chinook (Oncorhynchus tshawytscha): acclimated to temperatures indicated. Line A-B denotes rising lethal threshold (incipient lethal temperatures) with increasing acclimation temperature. This rise eventually ceases at the ultimate lethal threshold (ultimate upper incipient lethal temperature), line B-C.
to a few hours will not greatly affect the thermal tolerance limits, since acclimation to changing temperatures requires several days (Brett 1941). ${ }^{251}$

At the temperatures above and below the incipient lethal temperatures, survival depends not only on the temperature but also on the duration of exposure, with mortality occurring more rapidly the farther the temperature is from the threshold (Figure III-3). (See Coutant 1970а ${ }^{267}$ and $1970 b^{288}$ for further discussion based on both field and laboratory studies.) Thus, organisms respond to extreme high and low temperatures in a manner similar to the dosage-response pattern which is common to toxicants, pharmaceuticals, and radiation (Bliss 1937). ${ }^{249}$ Such tests seldom extend beyond one week in duration.

MAXIMUM ACCEPTABLE TEMPERATURES FOR PROLONGED EXPOSURES

Specific criteria for prolonged exposure (1 week or longer) must be defined for warm and for cold seasons. Additional criteria for gradual temperature (and life cycle) changes during reproduction and development periods are discussed on pp. 162-165.

SPRING, SUMMER, AND FALL MAXIMA FOR PROLONGED EXPOSURE

Occupancy of habitats by most aquatic organisms is often limited within the thermal tolerance range to temperatures somewhat below the ultimate upper incipient lethal temperature. This is the result of poor physiological performance at near lethal levels (e.g., growth, metabolic scope for activities, appetite, food conversion efficiency), interspecies competition, disease, predation, and other subtle ecological factors (Fry 1951; ; 277 Brett 1971 ${ }^{256}$). This complex limitation is evidenced by restricted southern and altitudinal distributions of many species. On the other hand, optimum temperatures (such as those producing fastest growth rates) are not generally necessary at all times to maintain thriving populations and are often exceeded in nature during summer months (Fry 1951;277 Cooper 1953; ${ }^{264}$ Beyerle and Cooper 1960; ${ }^{246}$ Kramer and Smith 1960297). Moderate temperature fluctuations can generally' be tolerated as long as a maximum upper limit is not exceeded for long periods.
A true temperature limit for exposures long enough to reflect metabolic acclimation and optimum ecological performance must lie somewhere between the physiological optimum and the ultimate upper incipient lethal temperatures. Brett (1960) ${ }^{254}$ suggested that a provisional longterm exposure limit be the temperature greater than optimum that allowed 75 per cent of optimum performance. His suggestion has not been tested by definitive studies.
Examination of literature on performance, metabolic rate, temperature preference, growth, natural distribution, and tolerance of several species has yielded an apparently sound theoretical basis for estimating an upper temperature limit for long term exposure and a method for doing this with a minimum of additional research. New data will provide refinement, but this method forms a useful guide for the present time. The method is based on the general observations summarized here and in Figure III-4 (a, b, c).

1. Performances of organisms over a range of temperatures are available in the scientific literature for a variety of functions. Figures III-4a and b show three characteristic types of responses numbered 1 through 3 , of which types 1 and 2 have coinciding optimum peaks. These optimum temperatures are characteristic for a species (or life stage).
2. Degrees of impairment from optimum levels of various performance functions are not uniform with increasing temperature above the optimum for a single species. The most sensitive function appears to be growth rate, for which a temperature of zero growth (with abundant food) can be determined for important species and life stages. Growth rate of organisms appears to be an integrator of all factors acting on an organism. Growth rate should probably be expressed as net biomass gain or net growth (McCormick et al. 1971) ${ }^{302}$ of the population, to account for deaths.
3. The maximum temperature at which several species
are consistently found in nature (Fry $1951 \boldsymbol{j}^{277}$ Narver 1970) ${ }^{306}$ lies near the average of the optimum temperature and the temperature of zero net growth.
4. Comparison of patterns in Figures III-4a and b among different species indicates that while the trends are similar, the optimum is closer to the lethal level in some species than it is in sockeye salmon. Invertebrates exhibit a pattern of temperature effects on growth rate that is very similar to that of fish (Figure III-4c).
The optimum temperature may be influenced by rate of feeding. Brett et al. . (1969) ${ }^{257}$ demonstrated a shift in optimum toward cooler temperatures for sockeye salmon when ration was restricted. In a similar experiment with channel catfish, Andrews and Stickney (1972) ${ }^{242}$ could see no such shift. Lack of a general shift in optimum may be due to compensating changes in activity of the fish (Fry personal observation). ${ }^{326}$
These observations suggest that an average of the optimum temperature and the temperature of zero net growth [(opt. temp. + z.n.g. temp) $/ 2$] would be a useful estimate of a limiting weekly mean temperature for resident organisms, providing the peak temperatures do not exceed values recommended for short-term exposures. Optimum growth rate would generally be reduced to no lower than 80 per cent of the maximum if the limiting temperature is as averaged above (Table III-11). This range of reduction from optimum appears acceptable, although there are no quantitative studies available that would allow the criterion to be based upon a specific level of impairment.

The criteria for maximum upper temperature must allow for seasonal changes, because different life stages of many species will have different thermal requirements for the average of their optimum and zero net growths. Thus a juvenile fish in May will be likely to have a lower maximum acceptable temperature than-will the same fish in July, and this must be reflected in the thermal criteria for a waterbody.

TABLE III-11-Summary of Some Upper Limiting Temperatures in C, (for periods longer than one week) Based Upon Optimum Temperatures and Temperatures of Zero Net Growth.

Specias	Oplimum	Zero net rowth	Referenco	$\frac{0 \mathrm{pt}+2 \cdot \mathrm{n} .1}{2}$	$\%$ of optinum
Calostomus commersoni (white sucker).....	27	29.6	-	28.3	86
Coregorus artedit (cisco of lake haring)....	16	21.2	McCormick ets. $1971{ }^{102}$	18.6	12
Ictalurus punctatus (channal catinsh).......	30	35.7	Strawa 1970320	32.8	94
".	30	35.7	Androws and Stickny 197242	32.8	81
Lepomis maerochirus (biutill) (year II)....	22	28.5	HeComish 1971501	25.3	82
Micropterus salmoides (layamoulh bass)....	21.5	34	Stawn 1965	30.1	13
Notropis atharinoides (emorald shiner).....	21	33		30.5	43
Salvalinus fontinalis (brook frout)..........	15.4	18.8	-	17.1	10

After Brett 1971^{256}
FIGURE III-4a-Performance of Sockeye Salmon (Oncorhynchus nerka) in Relation to Acclimation Temperature

While this approach to developing the maximum sustained temperature appears justified on the basis of available knowledge, few limits can be derived from existing data in the literature on zero growth. On the other hand, there is a
sizeable body of data on the ultimate incipient lethal temperature that could serve as a substitute for the data on temperature of zero net growth. A practical consideration in recommending criteria is the time required to conduct

After Brett 1971256
FIGURE III-4b-Performance of Sockeye Salmon (Oncorhynchus nerka) in Relation to Acclimation Temperature
research necessary to provide missing data. Techniques for determining incipient lethal temperatures are standardized (Brett 1952) ${ }^{252}$ whereas those for zero growth are not.
A temperature that is one-third of the range between the optimum temperature and the ultimate incipient lethal temperature that can be calculated by the formula

$$
\text { optimum temp. }+\frac{\text { ultimate incipient lethal temp.-optimum temp. }}{3}
$$

(Equation 1)
yields values that are very close to (optimum temp. + z.n.g. temp.)/2. For example, the values are, respectively, 32.7 and 32.8 C for channel catfish and 30.6 and 30.8 for largemouth bass (data from Table III-8 and Appendix II). This formula offers a practical method for obtaining allow- .

Ansell $1968{ }^{243}$

FIGURE III-4c-M. mercenaria: The general relationship between temperature and the rate of shell growth, based on field measurements of growth and temperature.

- : sites in Poole Harbor, England; O: North American sites.
able limits, while retaining as its scientific basis the requirements of preserving adequate rates of growth. Some limits obtained from data in the literature are given in Table III-12. A hypothetical example of the effect of this limit on growth of largemouth bass is illustrated in Figure III-5.
Figure III-5 shows a hypothetical example of the effects of the limit on maximum weekly average temperature on growth rates of juvenile largemouth bass. Growth data as a function of temperature are from Strawn 1961^{319}; the ambient temperature is an averaged curve for Lake Norman, N. C., adapted from data supplied by Duke Power Company. A general temperature elevation of 10 F is used to provide an extreme example. Incremental growth rates ($\mathrm{mm} / \mathrm{wk}$) are plotted on the main figure, while annual accumulated growth is plotted in the inset. Simplifying assumptions were that growth rates and the relationship of growth rate to temperature were constant throughout the year, and that there would be sufficient food to sustain maximum attainable growth rates at all times.

The criterion for a specific location would be determined by the most sensitive life stage of an important species likely to be present in that location at that time. Since many fishes have restricted habitats (e.g., specific depth zones) at many life stages, the thermal criterion must be applied to the proper zone. There is field evidence that fish avoid localized areas of unfavorably warm water. This has been demonstrated both in lakes where coldwater fish normally evacuate warm shallows in summer (Smith 1964) ${ }^{318}$ and at power station mixing zones (Gammon 1970; ${ }^{282}$ Merriman et al. 1965). ${ }^{304}$ In most large bodies of water there are both vertical and horizontal thermal gradients that mobile organisms can follow to avoid unfavorable high (or low) temperatures.

The summer maxima need not, therefore, apply to mixing zones that occupy a small percentage of the suitable habitat or necessarily to all zones where organisms have free egress to cooler water. The maxima must apply, however, to restricted local habitats, such as lake hypolimnia or thermoclines, that provide important summer sanctuary areas for cold-water species. Any avoidance of a warm area not part of the normal seasonal habitat of the species will mean that less area of the water body is available to support the population and that production may be reduced. Such reduction should not interfere with biological communities or populations of important species to a degree that is damaging to the ecosystem or other beneficial uses. Nonmobile organisms that must remain in the warm zone will probably be the limiting organisms for that location. Any recommendation for upper limiting temperatures must be applied carefully with understanding of the population dynamics of the species in question in order to establish both local and regional requirements.

158/Section III-Freshwater Aquatic Life and Wildlife

FIGURE III-5-A hypothetical example of the effects of the limit on maximum weekly average temperature on growth rates of juvenile largemouth bass. Growth data as a function of temperature are from Strawn 1961; the ambient temperature is an averaged curve for Lake Norman, N.C., adapted from data supplied by Duke Power Company. A general temperature elevation of 10 F is used to provide an extreme example. Incremental growth rates ($\mathrm{mm} / \mathrm{wk}$) are plotted on the main figure, while annual accumulated growth is plotted in the inset. Simplifying assumptions were that growth rates and the relationship of growth rate to temperature were constant throughout the year, and that there would be sufficient food to sustain maximum attainable growth rates at all times.

TABLE III-12-Summary of Some Upper Limiting Temperatures for Prolonged Exposures of Fishes Based on Optimum Temperatures and Ultimate Upper Incipient Lethal Temperatures (Equation 1).

Species	Oplimum		Function	Reterence	Uttimate upper incipient lethal temperature		Reference	Maximum weekiy averige lemperature (Eq. 1)	
	C	.f							
Catostomus commersoni (white sutket)......	27	80.6	growth	unpubl. NWQLª	29.3	84.7	Hart 1947205	27.8	82
Corefonus uttedii (Cisco or ake hering).....	16	60.8	growth	McCornick et al. 1971302	25.7	71.3	Edsali and Colby 19703m	18.2	66.6
Ictaturus punelatus (channel calish)	30	86	rrowth	Strawn 1970;; ${ }^{320}$ Andrews and Stickney 1971:42	38.0	100.4	Alien and Stawn 196840	32.7	90.9
Legomis macrochirus (bluegil) (yr Il).......	22	71.6	yowth	McComish 1971 ${ }^{301}$ Anderson 1955241	33.8	92.8	Hatt 1952\%	25.9	78.6
Mirropterus ditomieu (smalmouth bass)....	26.3	${ }^{83}$	Howth	Horning and Pearson 197299	35.0	35.0	Horring ond Parson 1972\%	29.9	85.1
	28.3	83	frowth	Peek 1965 ${ }^{200}$					
	ave 21.3	81.1							
Micropierus salmoides (largemouth hass)(fry).	27.5	81.5	srowth	Strawn 196139	36.4	97.5	Hart 1952208	30.5	86.7
Hotropps atherinoides (emerald shiner)......	21	80.6	crowth	unpubli, NWOL ${ }^{\text {as }}$	30.1	87.3	Hart 195228	28.2	82.1
Oncorhynchus nerk3 (sockeye salmon).......	15.0	59.0	growth	Brett et 21. 196935	25.0	7.0	Bretl 1952462	18.3	64.9
	15.0	59.8	other functions	Breth 197126					
(jureniles)..........................	15.0		max. swimming				.		
Psudopleuronectes Amaricants (winter nounder)	18.0	64.4	growtir	Brett 19703s	29.1	84.4	Hoff and Westman 196621	21.1	71.2
Samp truta (brown troul).................	11011 are 12.5	54.5	growth	Bratt 19902ss	23.5	74.3	Bishai 196027	16.2	61.2
Salvalinus foatioalis (brook trout)...........	15.4	59.7	growth	unpubl, HWQL ${ }^{\text {22 }}$	25.5	71.9	Fry, Hart and Wajer, 19igas	18.2	64.8
	13.0	55.4	growth	Baldwin 195724					
	15	59	metabolic	Graham 191924					
	ave 14.5	58.1	scope						
Saivolinus namaycush (lake trout)..........	16	60.1	scope for activity (2 metabol'sm)	Gibson and fry 195423	23.5		Gibson and Fry 195423	18.8	65.8
	$\begin{gathered} 17 \\ 2 v 816.5 \end{gathered}$	$\begin{aligned} & 62.6 \\ & 61.7 \end{aligned}$	swimming speed						

Heat added to upper reaches of some cold rivers can be retained throughout the river's remaining length (Jaske and Synoground 1970). ${ }^{292}$ This factor adds to the natural trend of warming at distances from headwaters. Thermal additions in headwaters, therefore, may contribute substantially to reduction of cold-water species in downstream areas (Mount 1970). ${ }^{305}$ Upstream thermal additions should be evaluated for their effects on summer máxima at downstream locations, as well as in the immediate vicinity of the heat source.

Recommendation

Growth of aquatic organisms would be maintained at levels necessary for sustaining actively growing and reproducing populations if the maximum weekly average temperature in the zone inhabited by the species at that time does not exceed one-third of the range between the optimum temperature and the ultimate upper incipient lethal temperature of the species (Equation 1, page 157), and the temperatures above the weekly average do not exceed the criterion for short-term exposures. This maximum need not apply to acceptable mixing zones (see proportional relationships of mixing zones to receiving systems, p. 114), and must be applied with adequate understanding of the normal seasonal distribution of the important species.

WINTER MAXIMA

Although artificially produced temperature elevations during winter months may actually bring the temperature closer to optimum or preferred temperature for important species and attract fish (Trembley 1965), ${ }^{321}$ metabolic acclimation to these higher levels can preclude safe return of the organism to ambient temperatures should the artificial heating suddenly cease (Pennsylvania Fish Commission 1971; ${ }^{310}$ Robinson 1970) ${ }^{316}$ or the organism be driven from the heat area. For example, sockeye salmon (Oncorhynchus nerka) acclimated to 20 C suffered 50 percent mortality in the laboratory when their temperature was dropped suddenly to 5 C (Brett 1971 :256 see Figure III-3). The same population of fish withstood a drop to zero when acclimated to 5 C . The lower limit of the range of thermal tolerance of important species must, therefore, be maintained at the normal seasonal ambient temperatures throughout cold seasons, unless special provisions are made to assure that rapid temperature drop will not occur or that organisms cannot become acclimated to elevated temperatures. This can be accomplished by limitations on temperature elevations in such areas as discharge canals and mixing zones where organisms may reside, or by insuring that maximum temperatures occur only in areas not accessible to important aquatic life for lengths of time sufficient to allow metabolic acclimation. Such inaccessible areas would include the high-velocity zones of diffusers or screened dis-
charge channels. This reduction of maximum temperatures would not preclude use of slightly warmed areas as sites for intense winter fisheries.

This consideration may be important in some regions at times other than in winter. The Great Lakes, for example, are susceptible to rapid changes in elevation of the thermocline in summer which may induce rapid decreases in shoreline temperatures. Fish acclimated to exceptionally high temperatures in discharge canals may be killed or severely stressed without changes in power plant operations (Robinson 1968). ${ }^{314}$ Such regions should take special note of this possibility.

Some numerical values for acclimation temperatures and lower limits of tolerance ranges (lower incipient lethal temperatures) are given in Appendix II-C. Other data must be provided by further research. There are no adequate data available with which to estimate a safety factor for no stress from cold shocks. Experiments currently in progress, however, suggest that channel catfish fingerlings are more susceptible to predation after being cooled more than 5 to 6 C (Coutant, unpublished data). ${ }^{324}$

The effects of limiting ice formation in lakes and rivers should be carefully observed. This aspect of maximum winter temperatures is apparent, although there is insufficient evidence to estimate its importance.

Recommendation

Important species should be protected if the maximum weekly average temperature during winter months in any area to which they have access does not exceed the acclimation temperature (minus a 2 C safety factor) that raises the lower lethal threshold temperature of such species above the normal ambient water temperatures for that season, and the criterion for short-term exposures is not exceeded. This recommendation applies especially to locations where organisms may be attracted from the receiving water and subjected to rapid thermal drop, as in the low velocity areas of water diversions (intake or discharge), canals, and mixing zones.

SHORT-TERM EXPOSURE TO EXTREME TEMPERATURE

To protect aquatic life and yet allow other uses of the water, it is essential to know the lengths of time organisms can survive extreme temperatures (i.e., temperatures that exceed the 7 -day incipient lethal temperature). Both natural environments and power plant cooling systems can briefly reach temperature extremes (both upper and lower) without apparent detrimental effect to the aquatic life (Fry 1951; ${ }^{277}$ Becker et al. 1971). ${ }^{245}$

The length of time that 50 per cent of a population will survive temneratire ahnve the incinient lethal temneratitre
can be calculated from a regression equation of experi. mental data (such as those in Figure III-3) as follows:

$$
\log (\text { time })=\mathrm{a}+\mathrm{b}(\text { temp. }) \quad(\text { Equation } 2)
$$

where time is expressed in minutes, temperature in degrees centigrade and where a and b are intercept and slope, respectively, which are characteristics of each acclimation temperature for each species. In some cases the timetemperature relationship is more complex than the semilogarithmic model given above. Equation 2, however, is the most applicable, and is generally accepted by the scientific community (Fry 1967). ${ }^{279}$ Caution is recommended in extrapolating beyond the data limits of the original research (Appendix II-C). The rate of temperature change does not appear to alter this equation, as long as the change occurs more rapidly than over several days (Brett 1941; ${ }^{251}$ Lemke 1970). ${ }^{300}$ Thermal resistance may be diminished by the simultaneous presence of toxicants or other debilitating factors (Ebel et al. 1970, ${ }^{273}$ and summary by Coutant 1970c). ${ }^{269}$ The most accurate predictability can be derived from data collected using water from the site under evaluation.

Because the equations based on research on thermal tolerance predict 50 per cent mortality, a safety factor is needed to assure no mortality. Several studies have indicated that a 2 C reduction of an upper stress temperature results in no mortalities within an equivalent exposure duration (Fry et al. 1942;80 Black 1953). ${ }^{248}$ The validity of a two degree safety factor was strengthened by the results of Coutant (1970a). ${ }^{267} \mathrm{He}$ showed that about 15 to 20 per cent of the exposure time, for median mortality at a given high temperature, induced selective predation on thermally shocked salmon and trout. (This also ämounted to reduction? of the effective stress temperature by about 2 C.) Unpublished data from subsequent predation experiments: showed that this reduction of about 2 C also applied to the incipient lethal temperature. The level at which there is no increased vulnerability to predation is the best estimate of a no-stress exposure that is currently available. No similar safety factor has been explored for tolerance of low temperatures. Further research may determine that safety factors, as well as tolerance limits, have to be decided independently for each species, life stage, and water quality situation.

Information needed for predicting survival of a number of species of fish and invertebrates under short-term conditions of heat extremes is presented in Appendix II-C. This information includes (for each acclimation temperature) upper and lower incipient lethal temperatures: coefficients a and b for the thermal resistance equation; and information on size, life stage, and geographic source of the species. It is clear that adequate data are available for only a small percentage of aquatic species, and additional research is necessary. Thermal resistance information should be

taneous presence of toxicants or other debilitating factors, a consideration not reflected in Appendix II-C data. More data are available for upper lethal temperatures than for lower.

The resistance time equation, Equation 2, can be rearranged to incorporate the 2 C margin of safety and also to define conditions for survival (right side of the equation less than or equal to 1) as follows:

$$
1 \geq \frac{\text { time }}{10^{[a+b(\operatorname{temp} p+2)]}}
$$

(Equation 3)
Low levels of mortality of some aquatic organisms are not necessarily detrimental to ecosystems, because permissible mortality levels can be established. This is how fishing or shellfishing activities are managed. Many states and international agencies have established elaborate systems for setting an allowable rate of mortality (for sport and commercial fish) in order to assure needed reproduction and survival. (This should not imply, however, that a form of pollution should be allowed to take the entire harvestable yield.) Warm discharge water from a power plant may sufficiently stimulate reproduction of some organisms (e.g., zooplankton), such that those killed during passage through the maximally heated areas are replaced within a few hours, and no impact of the mortalities can be found in the open water (Churchill and Wojtalik $1969 ;{ }^{262}$ Heinle 1969). ${ }^{288}$ On the other hand, Jensen (1971) ${ }^{293}$ calculated that even five percent additional mortality of 0 -age brook trout (Salvelinus fontinalis) decreased the yield of the trout fishery, and 50 per cent additional mortality would, theoretically. cause extinction of the population. Obviously, there can be no adequate generalization concerning the impact of shortterm effects on entire ecosystems, for each case will be somewhat different. Future research must be directed toward determining the effects of local temperature stresses on population dynamics. A complete discussion will not be attempted here. Criteria for complete short-term protection may not always be necessary and should be applied with an adequate understanding of local conditions.

Recommendation

Unless there is justifiable reason to believe it unnecessary for maintenance of populations of a species, the right side of Equation 3 for that species should not be allowed to increase above unity when the temperature exceeds the incipient lethal temperature minus 2 C :

$$
1 \geq \frac{\text { time }}{10^{(a+b(\text { temp. }+2)]}}
$$

Values for a and b at the appropriate acclimation temperature for some species can be obtained from Appendix II-C or through additional research if necessary data are not available. This recommen-
dation applies to all locations where organisms to be protected are exposed, including areas within mixing zones and water diversions such as power station cooling water.

REPRODUCTION AND DEVELOPMENT

The sequence of events relating to gonad growth and gamete maturation, spawning migration, release of gametes, development of the egg and embryo, and commencement of independent feeding represents one of the most complex phenomena in nature, both for fish (Brett 1970) ${ }^{255}$ and invertebrates (Kinne 1970). ${ }^{236}$ These events are generally the most thermally sensitive of all life stages. Other environmental factors, such as light and salinity, often seasonal in nature, can also profoundly affect the response to temperature (Wiebe 1968). ${ }^{323}$ The general physiological state of the organisms (e.g., energy reserves), which is an integration of previous history, has a strong effect on reproductive potential (Kinne 1970). ${ }^{296}$ The erratic sequence of failures and successes of different year classes of lake fish attests to the unreliability of natural conditions for providing optimum reproduction.

Abnormal, short-term temperature fluctuations appear to be of greatest significance in reduced production of juvenile fish and invertebrates (Kinne, 1963). ${ }^{295}$ Such thermal fluctuations can be a prominent consequence of water use as in hydroelectric power (rapid changes in river flow rates), thermal electric power (thermal discharges at fluctuating power levels), navigation (irregular lock releases), and irrigation (irregular water diversions and wasteway releases). Jaske and Synoground (1970) ${ }^{292}$ have documented such temperature changes due to interacting thermal and hydroelectric discharges on the Columbia River.

Tolerable limits or variations of temperature change throughout development, and particularly at the most sensitive life stages, differ among species. There is no adequate summary of data on such thermal requirements for successful reproduction. The data are scattered through many years of natural history observations (however, see Breder and Rosen 1966^{250} for a recent compilation of some data; also see Table III-13). High priority must be assigned to summarizing existing information and obtaining that which is lacking.

Uniform elevations of temperature by a few degrees during the spawning period, while maintaining short-term temperature cycles and seasonal thermal patterns, appear to have little overall effect on the reproductive cycle of resident aquatic species, other than to advance the timing for spring spawners or delay it for fall spawners. Such shifts are often seen in nature, although no quantitative measurements of reproductive success have been made in this connection. For example, thriving populations of many fishes occur in diverse streams of the Tennessee Valley in which the date of the spawning temperature may vary in a

TABLE III-13-Spawning Requirements of Some Fish, Arranged in Ascending Order of Spawning Temperatures (Adapted from Wojtalik, T. A., unpublished manuscript)*

TABLE III-13-Spawning Requirements of Some Fish, Arranged in Ascending Order of Spawning Temperatures-Continued

Fishes	Temp. (C)	Spawning site	Range in spawsing depth	Daily spawning time	Egg sito	Incubation period days (Temp. C)
Blue catish						
Itaturus furctus...............................	22.2					
Flathead catifish						
Pylodictis olivaris...............................	22.2					
Redeas sunlish						
Lepomis microlophus............................	23.0	Quiet, various	Inches to 10 lett		
Lonter sunfish					.	
L. meplotis....................................	23.3					
Freshwater drum						
Apiodinotus grunniens............................	23.0					
River carpsscker						
Cargoides crpio................................	23.9					
Spotted bull head						
Italurer serracinhus...........................	26.7					
Yoilow bullhead					\cdots	
I. matalis.		Quiet, shallows	11/2-4 feet		8oltom	5-10 (18.9)

* T. A. Wojtalik, Tennessee Valley Authority, Muscle Shoals, Aabama. ${ }^{379}$
given year by 22 to 65 days. Examination of the literature shows that shifts in spawning dates by nearly one month are common in natural waters throughout the U.S. Populations of some species at the southern limits of their distribution are exceptions, e.g., the lake whitefish (Coregonus clupeaformis) in Lake Erie that require a prolonged, cold incubation period (Lawler 1965) ${ }^{299}$ and species such as yellow perch (Perca favescens) that require a long chill period for egg maturation prior to spawning (Jones, unpublished data) ${ }^{327}$
This biological plasticity suggests that the annual spring rise, or fall drop, in temperature might safely be advanced (or delayed) by nearly one month in many regions, as long as the thermal requirements that are necessary for migration, spawning, and other activities are not eliminated and the necessary chill periods, maturation times, or incubation periods are preserved for important species. Production of food organisms may advance in a similar way, with little disruption of food chains, although there is little evidence to support this assumption (but see Coutant 1968;265 Coutant and Steele $1968 ; 271$ and Nebeker 1971). ${ }^{307}$ The process is similar to the latitudinal differences within the range of a given species.

Highly mobile species that depend upon temperature synchrony among widely different regions or environments for various phases of the reproductive or rearing cycle (e.g., anadromous salmonids or aquatic insects) could be faced with dangers of dis-synchrony if one area is warmed, but another is not. Poor long-term success of one year class of Fraser River (British Columbia) sockeye salmon (Oncorhynchus nerka) was attributed to early (and highly successful) fry production and emigration during an abnormally warm summer followed by unsuccessful, premature feeding activity in the cold and still unproductive estuary (Vernon 1958). ${ }^{322}$ Anadromous species are able, in some cases, (see studies of eulachon (Thaleichthys pacificus) by Smith and

Saalfeld 1955) ${ }^{317}$ to modify their migrations and spawning to coincide with the proper temperatures whenever and wherever they occur.

Rates of embryonic development that could lead to premature hatching are determined by temperatures of the microhabitat of the embryo. Temperatures of the microhabitat may be quite different from those of the remainder of the waterbody. For example, a thermal effluent at the temperature of maximum water density (approximately 4 C) can sink in a lake whose surface water temperature is colder (Hoglund and Spigarelli, 1972). ${ }^{290}$ Incubating eggs of such species as lake trout (Salvelinus namaycush) and various coregonids on the lake bottom may be intermittently exposed to temperatures warmer than normal. Hatching may be advanced to dates that are too early for survival of the fry in their nursery areas. Hoglund and Spigarelli $1972,{ }^{290}$ using temperature data from a sinking plume in Lake Michigan, theorized that if lake herring (Coregonus artedii) eggs had been incubated at the location of one of their temperature sensors, the fry would have hatched seven days early. Thermal limitations must, therefore, apply at the proper location for the particular species or life stage to be protected.

Recommendations

After their specific limiting temperatures and exposure times have been determined by studies tailored to local conditions, the reproductive activity of selected species will be protected in areas where:

- periods required for gonad growth and gamete maturation are preserved;
- no temperature differentials are created that block spawning migrations, although some delay or advancement of timing based upon local conditions may be tolerated;
- temperatures are not raised to a level at which necessary spawning or incubation temperatures of winter-spawning species cannot occur;
- sharp temperature changes are not induced in spawning areas, either in mixing zones or in mixed water bodies (the thermal and geographic limits to such changes will be dependent upon local requirements of species, including the spawning microhabitat, e.g., bottom gravels, littoral zone, and surface strata);
- timing of reproductive events is not altered to the extent that synchrony is broken where reproduction or rearing of certain life stages is shown to be dependent upon cyclic food sources or other factors at remote locations.
- normal patterns of gradual temperature changes throughout the year are maintained.

These requirements should supersede all others during times when they apply.

CHANGES IN STRUCTURE OF AQUATIC COMMUNITIES

Significant change in temperature or in thermal patterns over a period of time may cause some change in the composition of aquatic communities (i.e., the species represented and the numbers of individuals in each species). This has been documented by field studies at power plants (Trembley 1956-1960) ${ }^{321}$ and by laboratory investigations (McIntyre 1968). ${ }^{303}$ Allowing temperature changes to alter significantly the community structure in natural waters may be detrimental, even though species of direct importance to man are not eliminated.

The limits of allowable change in species diversity due to temperature changes should not differ from those applicable to any other pollutant. This general topic is treated in detail. in reviews by others (Brookhaven National Lab. 1969) ${ }^{258}$ and is discussed in Appendix II-B, Community Structure and Diversity Indices, p. 408.

NUISANCE ORGANISMS

Alteration of aquatic communities by the addition of heat may occasionally result in growths of nuisance organisms provided that other environmental conditions essential to such growths (e.g., nutrients) exist. Poltoracka (1968) ${ }^{311}$ documented the growth stimulation of plankton in an artificially heated small lake; Trembley ($1965{ }^{321}$) reported dense growths of attached algae in the discharge canal and shallow discharge plume of a power station (where the algae broke loose periodically releasing decomposing organic matter to the receiving water). Other instances of algal growths in effluent channels of power stations were reviewed by Coutant (1970c). ${ }^{269}$

Changed thermal patterns (e.g., in stratified lakes) may greatly alter the seasonal appearances of nuisance algal
growths even though the temperature changes are induced by altered circulation patterns (e.g., artificial destratifica. tion). Dense growths of plankton have been retarded in some instances and stimulated in others (Fast 1968;275 and unpublished data 1971). ${ }^{325}$

Data on temperature limits or thermal distributions in which nuisance growths will be produced are not presently available due in part to the complex interactions with other growth stimulants. There is not sufficient evidence to say that any temperature increase will necessarily result in increased nuisance organisms. Careful evaluation of local conditions is required for any reasonable prediction of effect.

Recommendation

Nuisance growths of organisms may develop where there are increases in temperature or alterations of the temporal or spatial distribution of heat in water. There should be careful evaluation of all factors contributing to nuisance growths at any site before establishment of thermal limits based upon this response, and temperature limits should be set in conjunction with restrictions on other factors (see the discussion of Eutrophication and Nutrients in Section I).

CONCLUSIONS

Recommendations for temperature limits to protect aquatic life consist of the following two upper limits for any time of the year (Figure III-6).

1. One limit consists of a maximum weekly average temperature that:
(a) in the warmer months (e.g., April through October in the North, and March through November in the South) is one third of the range between the optimum temperature and the ultimate upper incipient lethal temperature for the most sensitive important species (or appropriate life stage) that is normally found at that location at that time; or
(b) in the cooler months (e.g., mid-October to midApril in the North, and December to February in the South) is that elevated temperature from which important species die when that elevated temperature is suddenly dropped to the normal ambient temperature, with the limit being the acclimation temperature (minus a 2 C safety factor), when the lower incipient lethal temperature equals the normal ambient water temperature (in some regions this limit may also be applicable in summer); or
(c) during reproduction seasons (generally April-June and September-October in the North, and MarchMay and October-November in the South) is that
temperature that meets specific site requirements for successful migration, spawning, egg incubation, fry rearing, and other reproductive functions of important species; or
(d) at a specific site is found necessary to preserve normal species diversity or prevent undesirable growths of nuisance organisms.
2. The second limit is the time-dependent maximum temperature for short exposures as given by the speciesspecific equation:

$$
1 \geq \frac{\text { time }}{10^{[a+b(\operatorname{temp} p+2)]}}
$$

Local requirements for reproduction should supersede all other requirements when they are applicable. Detailed ecological analysis of both natural and man-modified aquatic environments is necessary to ascertain when these requirements should apply.

USE OF TEMPERATURE CRITERIA

A hypothetical electric power station using lake water for cooling is illustrated as a typical example in Figure III-7. This discussion concerns the application of thermal criteria to this typical situation.

The size of the power station is 1,000 megawatts electric (MW_{e}) if nuclear, or $1,700 \mathrm{MW}$ e if fossil-fueled (oil, coal, gas) ; and it releases 6.8 billion British Thermal Units (BTU) per hour to the aquatic environment. This size is representative of power stations currently being installed. Temperature rise at the condensers would be 20 F with cooling water flowing at the rate of 1,520 cubic feet/second $\left(\mathrm{ft}^{3} / \mathrm{sec}\right)$ or 682,000 gallons/minute. Flow could be increased to reduce temperature rise.

The schematic Figure III-7 is drawn with two alternative discharge arrangements to illustrate the extent to which design features affect thermal impacts upon aquatic life

FIGURE III-6-Schematic Summary of Thermal Criteria

Plume Scale

Warm condenser water can be carried from the station to the lake by (a) a pipe carrying water at a high flow velocity or (b) a canal in which the warm water flows slowly. There is little cooling in a canal, as measurements at several existing power stations have shown. Water can be released to the lake by using any of several combinations of water velocity and volume (i.e., number of outlets) or outlet dimensions and locations. These design features largely determine the configuration of the thermal plumes illustrated in Figure III-7 resulting from either rapid dilution with lake water or from slow release as a surface layer. The isotherms were placed according to computer simulation of thermal discharges (Pritchard 1971) ${ }^{312}$ and represent a condition without lake currents to aid mixing.

Exact configuration of an actual plume depends upon many factors (some of which change seasonally or even hourly) such as local patterns of currents, wind, and bottom and shore topography.

Analytical Steps

Perspective of the organisms in the water body and of the pertinent non-biological considerations (chemical, hydrological, hydraulic) is an essential beginning. This perspective requires a certain amount of literature survey or on site study if the information is not well known. Two steps are particularly important:

1. identification of the important species and community (primary production, species diversity, etc.) that are relevant to this site; and
2. determination of life patterns of the important species (seasonal distribution, migrations, spawning areas, nursery and rearing areas, sites of commercial or sport fisheries).

- This information should include as much specific information on thermal requirements as it is possible to obtain from the literature.

Other steps relate the life patterns and environmental requirements of the biota to the sources of potential thermal damage from the power plant. These steps can be identified with specific areas in Figure III-7.

Aquatic Areas Sensitive to Temperature Change

Five principal areas offer potential for biological damage from thermal changes, labeled A-E on Figure III-7. (There are other areas associated with mechanical or chemical effects that cannot be treated here; see the index.)

Area A The cooling water as it passes through the intake, intake piping $\left(A_{1}\right)$, condensers, discharge piping (A_{2}) or canal $\left(\mathrm{A}_{2}^{\prime}\right)$, and thermal plume (A_{3} or A_{3}^{\prime}), carrying with it small organisms (such as phytoplankton, zooplankton, invertebrate larvae, and fish eggs or larvae). Organisms receive a thermal shock to the full 20 F above ambient
temperature with a duration that depends upon the rate of water flow and the temperature drop in the plume.
Area B Water of the plume alone that entrains both small and larger organisms (including small fish) as it is diluted (B or B^{\prime}). Organisms receive thermal shocks from temperatures ranging from the discharge to the ambient temperature, depending upon where they are entrained.
Area C Benthic environment. where bottom organisms (including fish eggs) can be heated chronically or periodically by the thermal plume (C or C^{\prime}).
Area D The slightly warmed mixed water body (or large segment of it) where all organisms experience a slightly warmer average temperature (D).
Area E The discharge canal in which resident or seasonal populations reside at abnormally high temperatures (E).

Cooling Water Entrainment

It is not adequate to consider only thermal criteria for water bodies alone when large numbers of aquatic organisms may be pumped through a power plant. The probability of an organism being pumped through will depend upon the ratio of the volume of cooling water in the plant to the volume in the lake (or to the volume passing the plant in a river or tidal fresh water). Tidal environments (both freshwater and saline) offer greater potential for entrainment than is apparent, since the same water mass will move back and forth past the plant many times during the lifetime of pelagic residence time of most organisms. Thermal shocks that could be experienced by organisms entrained at the hypothetical power station are shown in Figure III-8.

Detrimental effects of thermal exposures received during entrainment can be judged by using the following equation for short-term exposures to extreme temperatures:

$$
\text { General criterion: } 1 \geq \frac{\text { time }}{10^{[n+b(\operatorname{tem} p,+2)]}}
$$

Values for a and b in the equation for the species of aquatic organisms that are likely to be pumped with cooling water may be obtained from Appendix II, or the data may be obtained using the methods of Brett (1952). ${ }^{252}$ The prevailing intake temperature would determine the acclimation temperature to be selected from the table.

For example, juvenile largemouth bass may frequent the near-shore waters of this lake and be drawn into the intake. To determine whether the hypothetical thermal discharges (Figure III-7) would be detrimental for juvenile bass, the following analysis can be made (assuming, for example, that the lake is in Wisconsin where these basic data for bass are available):

Criterion for juvenile bass (Wisconsin) when intake

Modified after Coutant 1970c ${ }^{269}$
FIGURE III-8-Time Course of Temperature Change in Cooling Water Passing Through the Example Power Station with Two Alternate Discharges. The Canal Is Assumed to Flow at a Rate of 3 Ft. Per Sec.
temperature (acclimation) is $70 \mathrm{~F}(21.11 \mathrm{C})$. (Data from Appendix II-C).

$$
{ }^{1} \geq \frac{\text { time }}{10^{[34.3649-0.9789(t \operatorname{tamp} .+2)]}}
$$

Canal

Criterion applied to entrainment to end of discharge canal (discharge temperature is 70 F plus the 20 degree rise in the condensers or $90 \mathrm{~F}(32.22 \mathrm{C})$. The thermal plume would provide additional exposure above the lethal threshold, minus 2 C (29.5 C or 85.1 F) of more than four hours.

$$
1 \geq \frac{60}{10^{[34.3649-0.9789(32.22+2)]}}
$$

$1 \geq 8.15$

Conclusion:

Juvenile bass would not survive to the end of the discharge canal.

Dilution

Criterion applied to entrainment in the system em-
ploying rapid dilution.

$$
\begin{aligned}
& 1 \geq \frac{1.2}{10^{[34.3649-0.9789(32.22+2.0)]}} \\
& 1 \geq \frac{1.2}{7.36}
\end{aligned}
$$

Travel time in piping to discharge is assumed to be 1 min., and temperature drop to below the lethal threshold minus $2 \mathrm{C}(29.5 \mathrm{C}$ or 85.1 F$)$ is about 10 sec . (Pritchard, 1971). ${ }^{312}$

Conclusion

Juvenile bass would survive this thermal exposure:

$$
1 \geq 0.1630
$$

By using the equation in the following form,

$$
\log (\text { time })=a+b(\text { temp } .+2)
$$

the length of time that bass could barely survive the expected temperature rise could be calculated, thus allowing selection of an appropriate discharge system. For example:

$$
\begin{aligned}
\log (\text { time }) & =34.3649-0.9789(34.22) \\
\log (\text { time }) & =0.8669 \\
\text { time } & =7.36
\end{aligned}
$$

This would be about 1,325 feet of canal flowing at $3 \mathrm{ft} / \mathrm{sec}$.
It is apparent that a long discharge canal, a nonrecirculating cooling pond, a very long offshore pide, or delayed dilution in a mixing zone (such as the one promoting surface cooling) could prolong the duration of exposure of pumped organisms and thereby increase the likelihood of damage to them. Precise information on the travel times of the cooling water in the discharge system is needed to conduct this analysis.
The calculations have ignored changing temperatures in the thermal plume, because the canal alone was lethal, and cooling in the plume with rapid dilution was so rapid that the additional exposure was only for 10 seconds (assumed to be at the discharge temperature the whole time). There may be other circumstances under which the effect of decreasing exposure temperature in the plume may be of interest.

Effects of changing temperatures in the plume can be estimated by summing the effects of incremental exposures for short time periods (Fry et al. 1946 ${ }^{281}$). For example, the surface cooling plume of Figures III-7 and III-8 could be considered to be composed of several short time spans, each with an average temperature, until the temperature had dropped to the upper lethal threshold minus 2 C for the juvenile bass. Each time period would be calculated as if it were a single exposure, and the calculated values for all time periods would be summed and compared with unity, as follows:

$$
\frac{\text { time }_{1}}{10^{[a+b(t \operatorname{tenp} \cdot 1+2)]}}+\frac{\text { time }_{2}}{10^{\left[a+b\left(t \operatorname{temp} \cdot 2^{2}+2\right)\right]}}+\cdots \frac{\text { time }_{n}}{10^{(a+b(\operatorname{temp} \cdot n+2)]}}
$$

The surface cooling plume of Figure III-6 (exclusive of the canal) could be considered to consist of 15 min at $89.7 \mathrm{~F}(32.06 \mathrm{C}), 15 \mathrm{~min}$ at $89.2 \mathrm{~F}(31.78 \mathrm{C}), 15 \mathrm{~min}$ at $88.7 \mathrm{~F}(31.4 \mathrm{C}), 15 \mathrm{~min}$ at $88.2 \mathrm{~F}(31.22 \mathrm{C}), 15 \mathrm{~min}$ at $87.8 \mathrm{~F}(31.00 \mathrm{C})$, until the lethal threshold for 70 F acclimation minus $2 \mathrm{C}(85.1 \mathrm{~F})$ was reached. The calculation would proceed as follows:
$1 \geq \frac{15}{10^{(34.3649 \sim 0.0789(32.06+2)]}}$

$$
+\frac{15}{10^{[34.3649-0.9789(31.78+2)]}}+\cdots
$$

In this case, the bass would not survive through the first 15-minute period. In other such calculations, several steps would have to be summed before unity was reached (if not reached, the plume would not be detrimental).

Entrainment in the Plume

Organisms mixed with the thermal plume during dilution will also receive thermal shocks, although the maximum temperatures will generally be less than the discharge
temperature. The number of organisms affected to some degree may be significantly greater than the numbers actually pumped through the plant. The route of maximum thermal exposure for each plume is indicated in Figure III-7 by a dashed line. This route should be analyzed to determine the maximum reproducible effect.

Detrimental effects of these exposures can also be judged by using the criterion for short-term exposures to extreme temperatures. The analytical steps were outlined above for estimating the effects on organisms that pass through the thermal plume portions of the entrainment thermal pattern. There would have been no mortalities of the largemouth bass from entrainment in the plume with rapid dilution, due to the short duration of exposure (about 10 seconds). Any bass that were entrained in the near-shore portions of the larger plume, and remained in it, would have died in less than 15 minutes.

Bottom Organisms Impacted by the Plume

Bottom communities of invertebrates, algae, rooted aquatic plants, and many incubating fish eggs can be exposed to warm plume water, particularly in shallow environments. In some circumstances the warming can be continuous, in others it can be intermittent due to changes in plume configuration with changes in currents, winds, or other factors. Clearly a thermal plume that stratifies and occupies only the upper part of the water column will have least effect on bottom biota.

Several approaches are useful in evaluating effects on the community. Some have predictive capability, while others are suitable largely for identifying effects after they have occurred. The criterion for short-term exposures identified relatively brief periods of detrimental high temperatures. Instead of the organism passing through zones of elevated temperatures, as in the previous examples, the organism is sedentary, and the thermal pulse passes over it. Developing fish eggs may be very sensitive to such changes. A brief pulse of high temperature that kills large numbers of organisms may affect a bottom area for time periods far longer than the immediate exposure time. Repeated sublethal exposures may also be detrimental, although the process is more complex than straight-forward summation. Analysis of single exposures proceeds exactly as described for plume entrainment.

The criterion for prolonged exposures is more generally applicable. The maximum tolerable weekly average temperature may be determined by the organisms present and the phase of their life cycle. In May, for example, the maximum heat tolerance temperature for the community may be determined by incubating fish eggs or fish fry on the bottom. In July it may be determined by the important resident invertebrate species. A well-designed thermal discharge should not require an extensive mixing zone where these criteria are exempted. Special criteria for reproductive processes may have to be applied, although thermal dis-
charges should be located so that zones important for reproduction-migration, spawning, incubation-are not used.

Criteria for species diversity provide a useful tool for identifying effects of thermal changes after they have occurred, particularly the effects of subtle changes that are a result of community interactions rather than physiological responses by one or more major species. Further research may identify critical temperatures or sequences of temperature changes that cannot be exceeded and may thereby provide a predictive capability as well. (See Appendix II-B.)

Mixed Water Body (or major region thereof)

This is the region most commonly considered in establishing water quality standards, for it generally includes the major area of the water body. Here the results of thermal additions are observed as small temperature increases over a large area (instead of high temperatures locally at the discharge point), and all heat sources become integrated into the normal annual temperature cycle (Figure III-6 and Figure III-7 insert).

Detrimental high temperatures in this area (or parts of it) are defined by the criteria for maximum temperatures for prolonged exposure (warm and cool months) for the most sensitive species or life stage occurring there, at each time of year, and by the criteria for reproduction.

For example, in the lake with the hypothetical power station, there may be 40 principal fish species, of which half are considered important. These species have spawning temperatures ranging from 5 to 6 C for the sauger (Stizostedion canadense) to 26.7 C for the spotted bullhead (Ictalurus serracanthus). They also have a similar range of temperatures required for egg incubation, and a range of maximum temperatures for prolonged exposures of juveniles and adults. The requirements, however, may be met any time within normal time spans, such as January 1 to 24 for sauger spawning, and March 25 to April 29 for smallmouth bass spawning. Maximum temperatures for prolonged exposures
may increase steadily throughout a spring period. To predict effects of thermal discharges the pertinent temperatures for reproductive activities and maximum temperatures for each life stage can be plotted over a 12 -month period such as shown in Fig. III-6. A maximum annual temperature curve can become apparent when sufficient biological data are available. Mount (1970) ${ }^{305}$ gives an example of this type of analysis.

Discharge Canal

Canals or embayments that carry nearly undiluted condenser cooling water can develop biological communities that are atypical of normal seasonal communities. Interest in these areas does not generally derive from concern for a balanced ecosystem, but rather from effects that the altered communities can have on the entire aquatic ecosystem.

The general criteria for nuisance organisms may be applicable. In the discharge canals of some existing power stations, extensive mats of temperature-tolerant blue-green algae grow and periodically break away, adding a decomposing organic matter to the nearby shorelines.

The winter criterion for maximum temperatures for prolonged exposures identifies the potential for fish kills due to rapid decreases in temperature. During cold seasons particularly, fish are attracted to warmer water of an enclosed area, such as a discharge canal. Large numbers may reside there for sufficiently long periods to become metabolically acclimated to the warm water. For any acclimation temperature there is a minimum temperature to which the species can be cooled rapidly and still survive (lower incipient lethal temperature). These numerical combinations, where data are available, are found in Appendix II-C. There would be 50 per cent mortality, for example, if largemouth bass acclimated in a discharge canal to 20 C , were cooled to 5.5 C or below. If normal winter ambient temperature is less than 5.5 C , then the winter maximum should be below 20 C , perhaps nearer 15 C . If it is difficult to maintain the lower temperatures, fish should be excluded from the area.

HEAT AND TEMPERATURE

${ }_{20}$ Allen, K. O. and K. Strawn (1968), Heat tolerance of channel catfish Ictalurus punctalus, in Proceedings of the 21st annual conference of the Southeastern Association of Game and Fish Commissioners (The Association, Columbia, South Carolina), pp. 399-411.
${ }^{241}$ Anderson, R. O. (1959), The influence of season and temperature on the growth of the bluegill (Lepomis macrochirus). Ph.D. thesis, University of Michigan, Horace H. Rackham School of Graduate Studies. 133 p .
${ }^{212}$ Andrews, J. W. and R. R. Stickney (1972), Interaction of feeding rates and environmental temperature of growth, food conversion, and body composition of channel catfish. Trans. Amer. Fish. Soc. 101(1):94-99.
${ }^{243}$ Ansell, A. D., 1968. The Rate of Growth of the hard clam Mercenaria mercenaria (L) throughout the geographical range. Conseil permanent international pour l'exploration de la mer. 31 :(3) 364-409.
${ }^{244}$ Baldwin, N. S. (1957). Food consumption and growth of brook trout at different temperatures. Trans. Amer. Fish. Soc. 86:323-
${ }^{245}$ Becker, C. D., C. C. Coutant, and E. F. Prentice (1971), Experimental drifts of juvenile salmonids through effuent discharges at Hanford. Part II. 1969 drifts and conclusions [USAEC BNWL-1527] (Bat-telle-Northwest, Richland, Washington), 61 p .
248 Beyerle, G. B. and Cooper, E. L. (1960), Growth of brown trout in selected Pennsylvania streams, Trans. American Fisheries Society 89(3): 255-262.
277 Bishai, H. M. (1960), Upper lethal temperatures for larval salmonids. 7. Cons. Perma. Int. Explor. Mer 25(2):129-133.
${ }_{248}$ Black, E. C. (1953), Upper lethal temperatures of some British Columbia freshwater fishes. 7. Fish. Res. Bd. Canada 10(4):196210.

249 Bliss, C. I. (1937), Calculation of the time-mortality curve. Ann. Appl. Biol. 24:815-852.
${ }^{250}$ Breder, C. M. and D. E. Rosen (1966), Modes of reproduction in fishes (The Natural History Press, New York), 941 p.
${ }^{251}$ Brett, J. R. (1941), Tempering versus acclimation in the planting of speckled trout. Trans. Amer. Fish. Soc. 70:397-403.
${ }^{262}$ Brett, J. R. (1952), Temperature tolerance in young Pacific salmon, genus Oncorkynchus. 7. Fish. Res. Bd. Canada 9:265-323.

Literature Cited/205

254 Brett, J. R. (1960), Thermal requirements of fish-three decades of study, in Biological problems of water pollution, C. M. Tarzwell, ed. (U.S. Department of Health, Education and Welfare, Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio), pp. 110-117.
${ }^{265}$ Brett, J. R. (1970), Temperature-animals-fishes, in Marine ecology, O. Kinne, ed. (John Wiley \& Sons, New York), vol. 1, pp. 515-560.
${ }^{368}$ Brett, J. R. (1971), Energetic responses of salmon to temperature. A study of some thermal relations in the physiology and fresh water ecology of sockeye salmon (Oncorhynchus nerka). Amer. Zool. 11(1):99-113.
${ }^{257}$ Brett, J. R., J. E. Shelbourn, and C. T. Shoop (1969), Growth rate and body composition of fingerling sockeye salmon, Oncorhynchus nerka, in relation to temperature and ration size. 7. Fish. Res. Bd. Canada 26(9):2363-2394.
${ }^{358}$ Brookhaven National Laboratory (1969), Diversity and stability in ecological systems. Brookhaven Symposia in Biology 22:264 pp.
${ }^{259}$ Bullock;T. H. (1955), Compensation for temperature in the metabolism and activity of poikilotherms. Biol. Rev. (Cambridge) 30(3): 311-342.
${ }_{250}$ Burdick, G. E., H. J. Dean, E. J. Harris, J. Skea, C. Frisa and C. Sweeney (1968), Methoxychlor as a blackfly larvicide: persistence of its residues in fish and its effect on stream arthropods. $\mathcal{N} . Y$. Fish. Game J. 15(2):121-142.
${ }^{261}$ Cairns, J., Jr. (1968), We're in hot water. Scientist and Citizen 10(8) 187-198.
${ }_{262}$ Churchill, M. A. and T. A. Wojtalik (1969), Effects of heated discharges on the aquatic environment: the TVA experience, in Prooceedings American Power Conference (Tennessee Valley Authority, Chattanooga), vol. 31, pp. 360-368.
${ }^{263}$ Clark, J: R. (1969), Thermal pollution and aquatic lifc. Sci. Amer. 220(3):18-27.
264 Cooper, E. L. (1953), Periodicity of growth and change of condition of brook trout (Salvelinus fontinalis) in three Michigan trout streams. Copeia 1953(2):107-114.
${ }^{268}$ Coutant, C. C. (1968), Thermal pollution-biological effects: a review of the literature of 1967.7. Water Pollut. Contr. Fed. 40(6): 1047-1052.
${ }^{266}$ Coutant, C. C. (1969), Thermal pollution-biological effects: a review of the literature of 1968. 7. Water Pollut. Contr. Fed. 41 (6): 1036-1053.
${ }^{267}$ Coutant, C. C. (1970a), Thermal pollution-biological effects: a review of the literature of 1969. J. Water Pollut. Contr. Fed. 42(6): 1025-1057.
${ }^{268}$ Coutant, C. C. (1970b), Thermal resistance of adult coho (Oncorhynchus kisutch) and jack chinook (O. tshawytscha) salmon, and the adult steelhead troul (Salmo gairdnerii) from the Columbia River [SEC BNWL-1508] Battelle-Northwest, Richland, Washington, 24 p.
${ }^{269}$ Coutant, C. C. (1970c), Biological aspects of thermal pollution. I. Entrainment and discharge canal effects. CRC Critical Rev. Environ. Contr. 1(3):341-381.
${ }^{270}$ Coutant, C. C. (1971), Thermal pollution-biological effects. 7. Water Pollut. Contr. Fed. 43(6):1292-1334.
${ }^{271}$ Coutant, C. C. and R. M. Steele (1968), Effect of temperature on the development rate of bottom organisms, in Pacific Northwest Laboratory Annual Report for 1967 to USAEC Division of Biology and Medicine, vol. I, Biological Sciences, Thompson, R. C., P. Teal and E. G. Swezes, eds. [BNWL-714] BattelleNorthwest, Richland, Washington.
${ }^{272}$ Doudoroff, P. and D. L. Shumway (1970), Dissolved oxygen requirements of freshwaler fishes [Food and Agricultural Organization fisheries technical paper 86] (FAO, Rome), 291 p .
${ }^{273}$ Ebel, W. J., E. M. Dawley, and B. Monk (1970), Thermal tolerance of juvenile Pacific salmon in relation to supersaturation of nitrogen gas. Fish. Bull. 69 (4):833-843.

206/Section III-Freshwater Aquatic Life and Wildlife

${ }^{374}$ Edsall, T. A. and P. J. Colby (1970), Temperature tolerance of young-of-the-year Cisco, Coregonus artedii. Transactions of American Fisheries Sociely 99:(3)526-531.
${ }^{276}$ Fast, A. W. (1968), Artificial destratification of El Capitan reservoir by aeration. I. Effects on chemical and physical parameters. Calif. Dep. Fish Game Fish Bull. no. 141, 97 p.
${ }^{276}$ Fry, F. E. J. (1947), Effects of the environment on animal activity. Univ. of Toronto Stud. Biol. Ser. No. 55 Publ. Ont. Fish. Resh. Lab. No. 68:1-62.
${ }^{277}$ Fry, F. E. J. (1951), Some environmental relations of the speckled trout (Salvelinas fontinalis). Proc. Northeast. Atlantic Fisheries Conf. May, 1951.
${ }^{278}$ Fry, F. E. J. (1964), Animals in aquatic environments: fishes temperature effects (Chapter 44) Handbook of Physiology, Section 4: Adaptation to the Environment. Amer. Physiol. Soc., Washington, D. C.
${ }^{379}$ Fry, F. E. J. (1967), Responses oî vertebrate poikilotherms to temperature [review], in Thermobiology, A. H. Rose, ed. (Academic Press, New York), pp. 375-409.
${ }^{280}$ Fry.F. E. J., J. R. Brett, and G. H. Clawson (1942), Lethal limits of temperature for young goldfish. Rev. Can. Biol. 1(1):50-56.
${ }^{281}$ Fry, F. E. J., J. S. Hart, and K. F. Walker (1946), Lethal temperature relations for a sample of young speckled trout, Savelinus fontinalis [University of Toronto biology series no. 54] (The University of Toronto Press, Toronto), pp. 9-35.
${ }^{282}$ Gammon, J. R. (1970), Aquatic life survey of the Wabash River, with special referente to the effects of thermal effuents on populations of microinvertebrates and fish, 1967-1969 (DePauw University, Zoology Department, Greencastle, Indiana), 65 p .
${ }^{281}$ Gibson, E. S. and F. E. J. Fry (1954), The performance of the lake trout, Salvelinus namaycush, at various levels of temperature and oxygen pressure. Can. 7. Zool. 32(3):252-260.
${ }^{284}$ Graham, J. M. (1949), Some effects of temperature and oxygen pressure on the metabolism and activity of the speckled trout Salvelinus fontinalis. Car. 7. Res (D) 27:270-288.
${ }^{285}$ Hart, J. S. (1947), Lethal temperature relations of certain fish in the Toronto region. Trans. Roy. Soc. Can. (Sec. 5) 41:57-71.
${ }^{286}$ Hart, J. S. (1952), Geographical variations of some physiological and morphological characters in certain freshwater. fish. (University of Toronto biology series no. 60) (The University of Toronto Press, Toronto), 79 p .
${ }^{287}$ Hawkes, A. L. (1961), A review of the nature and extent of damage caused by oil pollution at sea. Trans. N. Am. Wildl. and Nal. Resources Conf. 26:343-355.
${ }^{288}$ Heinle, D. R. (1969), Temperature and zooplankton. Ċhesapeake Sci. 10(3-4):186-209.
${ }^{289}$ Hoff, J. G. and J. R. Westman (1966), The temperature tolerances of three species of marine fishes. 7. Mar. Res. 24(2):131-140.
${ }^{290}$ Hoglund, B. and S. A. Spigarelli (1972), Studies of the sinking plume phenomenon. Argonne National Lab., Center for Envir. Stud., Argonne, IIl.
${ }^{291}$ Horning, W. B. II and R. E. Pearson (1972), Growth, temperature requirements and lower lethal temperature for juvenile smallmouth bass (Micropterus dolomieu Lacepede). Draft manuscript, U.S. National Water Quality Laboratory, Duluth, Minn.
${ }^{292}$ Jaske, R. T. and M. O. Synoground (1970), Effect of Hanford Plant operations on the temperature of the Columbia River 1964 to the present [BNWL-1345] (Battelle-Northwest, Richland, Washington), various paging.
${ }^{293}$ Jensen, A. L. (1971), The effect of increased mortality on the young in a population of brook trout: a theoretical analysis. Trans. Amer. Fish. Soc. 100(3):456-459.
294 Kennedy, V. S. and J. A. Mihursky (1967), Bibliography on the effects of temperature in the aquatic environment [Contribution 326] (University of Maryland, Natural Resources Institute, College Park) 89 p .
${ }^{295}$ Kinne, O. (1963), The effects of temperature and salinity on marine and brackish water animals. I. temperature. Oceanogr. Mar. Biol. Annul Rev. 1:301-340.
${ }^{296}$ Kinne, O. (1970), Temperature-animals-invertebrates, in Marine ecology, O. Kinne, ed. (John Wiley \& Sons, New York), vol. 1, pp. 407-514.
${ }^{297}$ Kramer, R. H. and L. L. Smith Jr. (1960). First year growth of the largemouth bass, Microplerns salmoides (Lacepde) and some related ccological factors. Transactions American Fisheries Sociely 89(2):222-233.
${ }^{298}$ Krenkel, P. A. and F. L. Parker, eds. (1969), Biological aspects of thermal pollution (Vanderbilt University Press, Nashville, Tennessee), 407 p .
${ }^{299}$ Lawler, G. H. (1965), Fluctuations in the success of year-classes of white-fish populations with special reference to Lake Erie. \mathcal{J}. Fish. Res. Bd. Conada 22(5):1197-1227.
${ }^{300}$ Lemke, A. L. (1970), Lethal effects of various rates of temperature increase on Gammarus pseudolimnaeus and Hydropsyche betteni with notes on other species. U.S. National Water Quality Laboratory, Duluth, Minnesota.
${ }^{301}$ McComish, T. S. (1971), Laboratory experiments on growth and food conversion by the bluegill. Ph.D. disscrtation, Univ. of Missouri, Columbia, Mo.
${ }^{302}$ McCormick, J. H. et, al. (1971), Temperature requirements for growth and survival for Larvae Ciscos (Coregonus artedii). Jour. Fish. Res. Bd. Canada 28:924.
${ }^{303}$ McIntire, C. D. (1968), Physiological-ecological studies of benthic algac in laboratory streams. J. Water Pollut. Contr. Fed. 40(11 part 1):1940-1952.
304 Merriman, D., et al. (1965), The Connecticut River investigation, 1965-1972. (A series of semi-annual progress reports). Connecticut Yankee Atomic Power Company, Haddar, Connecticut.
${ }^{305}$ Mount, D. I. (1970), Statement before hearing before the Joint Committee on Atomic Energy, Congress of the United States, Ninety-First Congress, first session (on environmental effects of producing electric power.] part 1, pp. 356-373.
${ }^{308}$ Narver, D. W. (1970), Diel vertical movements and feeding of underyearling sockeye salmon and the limnetic zooplankton in Babine Lake, British Columbia. J. Fish. Res. Bd. Canada 27(2): 281-316.
${ }^{307}$ Nebeker, A. V. (1971), Effect of temperature at different altitudes on the emergence of aquatic insects from a single stream. 7 . Kans. Entomol, Soc. 44(1):26-35.
${ }^{308}$ Parker, F.PL. and P. A. Krenkel, eds. (1969), Engineering aspects of thermal pollution (Vanderbilt University Press, Nashville, Tennessee), 351 p .
${ }^{208}$ Peek, F. W. (1965). Growth studies of laboratory and wild population samples of smallmouth bass (Micropterus dolomieu Lacepede) with applications to mass marking of fishes. M.S. Thesis, Univ. of Arkansas, Fayetteville.
${ }^{310}$ Pennsylvania Fish Commission (1971), Water pollution report no. 4170.
${ }^{311}$ Poltoracka, J. (1968), [Specific composition of phytoplankton in a lake warmed by waste water from a thermoelectric plant and lakes with normal temperature.] Acla. Soc. Bot. Pol. 37(2):297325.

312 Pritchard, D. W. (1971), Design and siting criteria for oncethrough cooling systems. Presented at the American Institute of Chemical Engineers 68th annual meeting, 2 March 1971, Houston, Texas.
${ }^{213}$ Raney, E. C. and B. W. Menzel (1969), Heated effuents and effects on aquatic life with emphasis on fishes: a bibliography, 38th ed. (U.S. Department of the Interior, Water Resources Information Center, Washington, D.C.), 469 p.
${ }^{14}$ Robinson, J. G. (1968), Fish mortality report, Lake Michigan, Port

Sheldon, Augus! 29, 7968 (Michigan Water Resources Commission, Lansing); 2 p .
${ }^{315}$ Robinson, J. G. (1970), Fish mortality report, Lake Michigan, Port Sheldon. Michigan Water Resources Commission, Lansing, Michigan.
${ }^{316}$ Robinson, J. G. (1970), Fish mortality report, Lake Michigan, Port Sheldon. Michigan Water Resources Commission Lansing, Michigan.
${ }^{317}$ Smith, W. E. and R. W. Saalfeld (1955), Studies on Columbia River smelt Thaleichthys pacificus (Richardson). Wash. Dep. Fish. Fish. Res. Pap. 1(3):1-24.
${ }^{218}$ Smith, S. H. (1964), Status of the deepwater cisco population of Lake Michigan. Trans. Amer. Fish. Soc. 93(2):155-163.
${ }^{319}$ Strawn, K. (1961), Growth of largemouth bass fry at various temperatures. Trans. Amer. Fish. Soc. 90:334-335.
${ }^{320}$ Strawn, K. (1970), Beneficial uses of warm water discharges in surface waters. In: Electric power and thermal discharges: thermal considerations in the production of electric power, M. Eisenbud and G. Gleason (eds.) pp. 143-156..
${ }^{321}$ Trembley, F. J. (1965), Effects of cooling water from steam-electric power plants on stream biota, in Biological problems in water pollution. Third seminar, C. M. Tarzwell, ed. (U.S. Department of Health, Education and Welfare, Public Health Service, Division of Water Supply and Pollution Control; Cincinnati, Ohio), pp. 334-345.
${ }^{322}$ Vernon, E. H. (1958), An examination of factors affecting the abundance of pink salmon in the Fraser River [Progress report no. 5] (International Pacific Salmon Fisheries Commission, New Westminster, British Columbia).
${ }^{323}$ Wiebe, J. P. (1968), The effects of temperature and day length on the reproductive physiology of the viviparous seaperch, Cymatogaster aggregata Gibbons. Can. J. Zool. 46(6):1207-1219.

References Cited

${ }^{324}$ Coutant, C. C., unpublished dala, (1971) Oak Ridge Laboratory, Oak Ridge, Tennessee.
${ }^{325}$ Fast, A. W. (1971), Effects of artificial acration on lake ecology. Ph.D. dissertation, Michigan State Univ., E. Lansing.
${ }^{326}$ Fry, F. E. J., personal observation, (1971) University of Toronto, Ontario, Canada, Dept. of Zoology.
${ }^{227}$ Jones, B., unpublished data, (1971) National Water Quality Laboratory, Duluth, Minnesota.
${ }^{228}$ Ńational Water Quality Laboratory (1971) unpub̀lished data, Duluth, Minnesota.
${ }^{329}$ Wojtalik, T. A., unpublished dala, (1971) Tennessee Valley Authority.

APPENDIX B^{*}

THERMAL TABLES

THERMAL TABLES—Time-temperature relationships and lethal threshold temperatures for resistance of aquatic organisms (principally fish) to extreme temperatures (from Coutant, in pressis 1972). Column headings, where not selfexplanatory, are identified in footnotes. LD50 data obtained for single times only were included only when they amplified temperature-time information.

[^3]THERMAL TABLES—Continued

Species Stage/age	Lenrth	Weight	Sex	Localion	Reference	Extrema	Acclimation		\log tima $=a+b(t e m p$.			Data limits ($\left.{ }^{\circ} \mathrm{C}\right)$		1058	Lethal thresholdd ($\left.{ }^{\circ} \mathrm{C}\right)$
							Tempa	Tima	3 l						
												upper	lower		
Coresonus astedii Juvenile (cisco)	Mixed	Pickerel	Edsall and	Upper	2	8 wks	16.5135-0.6689		-0.9789	23.0	19.0	19.7 \%
				Lake,	Colby,		5	4 wks	$10.2799-0.3645$	3	-0.9264	24.0	20.0		21.7.
				Washtenaw	1970,02		10	>2wks	$12.4893-0.4098$		-0.9734	28.0	24.0		24.2 \%
				Co., Mich.			20	2 whs	$17.2967-0.5333$	8	-0.9487	30.0	26.0		28.2 \%
							25	3 Hks	15.1204-0.4493	7	-0.9764	30.0	25.5		25.7 (y)
						Lower	2	8 whs			1.5	0.3		$<0.3)$
							5	4 whs	1.1	0.5	<0.5,
							10	>2 wks	$2.1355 \quad 0.3381$	5	0.9221	3.0	0.5		3.0 \%
							20	2 wks	$2.5090 \quad 0.2685$	6	0.9637	4.5	0.5		4.7
							25	3 wks	$1.1154 \quad 0.1652$	9	0.9175	9.5	0.5		9.1 \%
Coregonus hoyi Juvenile (bloater) (198) 1)		Mixed	Lake Michi-	Edsall, Rotiers	Upper	5	11 dab	15.8243-0.5831		-0.9095				
	$\text { 5.0. } 5.8$			gan at'	\& Brown.		10	$5 \mathrm{da}$	$9.0700-0.2895$		-0.9516	30.0	23.0		23.6
				Kenosha,	19700		15	5 da	17.1909-0.5701		-0.9960		24.5	...	
	.	-		Wisc.			20	5 da	$28.6392-0.9458$		-0.9692		25.5		26.2 \%
							25	5 da	$21.3511-0.6594$	5	-0.9958	30.0	26.5		26.1 \%
Cyprinodon vatie- Adult galus (sheepshoad minnow)				Strawn and	Uppei	35	($0 \% / 00$)	21.5021-0.6217		-9.9783		40.5		
				County,	Duna		35	$(5 \% / 00)$	$35.3415-0.7858$	6	-0.9787		41.0		40.5
				Texas	(198799)		35	(10% \%00)	30.0910-0.6629		-0.9950		41.5		
							35	(20% \% ${ }^{\text {a }}$	30.0394-0.6594		-0.9982				
Cyprimodor yaria- Aduit fatus yariegalus (sheepshead тіппон)			Galveston Island, Galveston, Texas	Simmons $(1971)^{97}$	Upper	30	$\begin{gathered} 700 \text { his. }^{2} \\ \text { (from } 21.3 \mathrm{C} \text {) } \end{gathered}$	$35.0420-0.0025$	2	41.4	10.8	.	
```Dorosoma cepedi- Underyarling anum (cizzard shad)```	$\cdots$		...........	Put-in-Bay, Ohio	Hat (1952) ${ }^{\text {as }}$	Uррег	25	feld $\&$ 3-4 dz	47.1163-1.3010	3	-0.9975	$35.5$	34.5	$\ldots$	$34.0$
							30	"	38.0653 -0.9694	1	-0.9921		36.5		38.0 奷
							35	"	31.5434-0.77]0	5	-9.9612	39.0	31.0		36.50
						Lowier	25	.........	....... .......	....	........	....	....	.....	
							30		,	$\ldots$	......	....	....		$14.5^{\circ}$
		:					35	.	....... .......	....	........		$\ldots$	........	20.0. 5
```Darosoma cepedi- Underyorting anum (cizzard shad)```				Knoxrille,	Hart (1952) ${ }^{\text {a }}$	Upper ${ }^{*} \cdot$	25		$32.1348-0.8688$	2	........	35.5	35.0		34.5 .
				Tann.			30	.	$41.1030-0.0547$	1	--0.9981	38.0	36.5	38.4
							35		$33.2846-0.8178$	-	-0.9896	39	36.5		
$\begin{aligned} & \text { Esox Lucius Juranile } \\ & \text { (Northern Pike) } \end{aligned}$	Minimum				Scoll (1964) ${ }^{\text {ge }}$	Upper									
	. 5.0 cm			tario, Canada	?		21.5	.	17.4439 -0.499	5	-0.9985	35.0	33.0		32.75
							30.0		11.0961-0.4319	5	-0.9971	35.5	33.5	.	33.1509
Esox masquintingy Juyenila (Muskeliunge)	Minimum			Dearlake	Scott (1964) ${ }^{44}$	Uppor	25.0		18.8879 -0.5035	5	-0.9742	34.5	32.5		32.8.
	5.0 cm		Hatchery	Scol(${ }^{\text {a }}$		27.5		$20.0817-0.5833$	5	-0.9911		33.0		32.75
				Onlario, Canada			30.0	18.9506 -0.4851	5	$=0.9972$		33.5	31.48
Esox hybrid Jayanila (luciusx masquinongy)	5.0 cm			Maple, On-	Seott (1964) ${ }^{\text {P6 }}$	Upper	25.0	.	18.6533-0.4926	1	-4.9811	34.5	33.0	.	32.5 匋
	minimum			tatio, Canada	${ }^{2}$		27.5		$20.7834-0.5660$	5	-0.9995	35.0	33.0	-	32, 813
							30.8		19.6126-0.5032	5	-0.9951	35.5	33.5		33.28
Fundulus chryso- Adult tus (golden topminnow					Stramn 2 Duan	Upper	35	(0% / 0)-	23.1244-0.5219	9	-0.9968	43.0	39.0	...	31.5
				County,	(1967) ${ }^{\text {n }}$		35	($5 \% / 0$)-	$21.2575-0.4601$	1	-0.9959	13.5	40.0		...6
							35	(210\%)-	$21.8635-0.4759$	1	-0.9905	43.5	40.0		
Fundulus dizpha- Adull aus (banded kitilifish)	Halitax Co.	Garside and	Upper	15	$(0 \% 00)^{\text {i }}$	27.5
				and Anappo-	Jordan		15	(14\%0)	$\ldots . . .$.		31.51
				lis Co., Norz Scotia	$(1968)^{34}$		15	(32\% $\%$)			21.5
Fundulus grandis Adult (gulf killifish)			Jellerson	Strawn \%	Upper	35	(0% \%)	22.8809 -0.5179	1	-0.9762		38.5		
				County,	Dunt		35	(5) $/ \infty$)	27.8447-0.6220	1	-0.9967	42.5	39.5		
							35	(10%)	24.9072-0.5535	9	-0.9926	13.0	39.0		
							35	(20% \%00)	23.4251-0.5189	8	-0.9970	13.0	39.5		
Fundulus hetera- Adult clitus (mummichot)	Halizx Co.	Garsida and	Upges	15	(0% \% ${ }^{\text {j }}$				20.14
				and Amapo.	Jordan		15	(14\%)	3.93
				lis Co., Noy Scotia	$11(1968)^{34}$		15	(32\%)				31. 5.7
a It is assumed in this table that the acelimation temperature reportad is a true actimation in the contoxt of Brett						S Expl	imental fis	Ish ware rened	from ents taken from	adults	from this 1	location.			
$(1952)^{14}$						- Thas	times aft	tar holding at 8	6 tor > 1 mo.						
${ }^{\text {b }}$ Humber of madian rasistance timas used for calcuiting reprassion equation.						${ }^{\text {a Accil}}$	mated and	lestod at 10%	/oo salinity.						
- Correlation coeticient (parfect Mt of all data points to the regrasion lins $=1.0$).						- Taste	din three	salinitiss.							
$d=$ Incipient lethal temperature ol Fry, at al., (1946),s3							dat 3 leve	ets of salinity.							
- Experimental fish were hatched from asgs obtained from aduls frem this location.															3

THERMAL TABLES-Continued

Species	Stage/8ig	Lengh	Weight	Sex	Lecalion	Reference	Accimation			log time $=\mathrm{ab}+\mathrm{b}$ (temp.)				Dala limits (${ }^{\circ} \mathrm{C}$)	1050	Lathat thresholdd ($\left.{ }^{\circ} \mathrm{C}\right)$
							Extreme	Tempa	Time	:	b	$\mathrm{N}^{\text {b }}$	r			

Fundulus par. Adull	6-7 cm	Mixad	Mission lay,	Doudoroft	Upper	14		23.3781	-0.6439	4	-0.9845	34.0	32.0	32.3
vipinnis (Cali-			Calil. (sea-	$(1945)^{74}$		20		50.6021	-1.3451	11	-0.9235	37.0	34.0	34.4
forniz kilijiish)			water)			28	24.5427	-0.5801	7	-0.9960	40.0	36.0	36.5
(tasted in seamater					Lower	14		2.1908	1.0751	3	0.9449	1.6	0.4	1.2
except as noted)						20		2.7381	0.2169	6.	0.9469	7.0	2.0	5.6
						20		2.5635	0.3481	1	0.8291	4.0	2.0	3.6
						20	(into 45\%	2.6552	0.4014	1	0.7348	4.0	2.0	3.8
						sea wa testit	day belore							

[^4][^5]- Salinity.

THERMAL TABLES—Continued

THERMAL TABLES—Continued

416/Appendix II-Freshwater Aquatic Life and Wildlife
THERMAL TABLES-Continued

THERMAL TABLES-Continued

418/Appendix II-Freshwater Aquatic Life and Wildlife
THERMAL TABLES-Continued

(1sy), , It a

- Mumber ol madian resirtanes timas used for calculating regrossion oquation.
 $\therefore=1$ lacipiont lathal temperature of Fry , of at. (194). N
- Rivat lump duting fall migration,

- Soen noth for Aiabasior 1857.4

4 Results did nat difier so dita mere combinad.

THERMAL TABLES—Continued

APPENDIX II-C

${ }^{6 s}$ Alabaster, J. S. (1967), The survival of salmon (Salmo salar L.) and sea trout (S. trutta L.) in fresh and saline water at high temperatures. Waier Res. 1(10):717-730.
${ }^{69}$ Alabaster, J. S. and A. L. Downing (1966), A field and laboratory investigation of the effect of heated effluents on fish. Fish. Min. Agr. Fish Food (Great Britain) Ser. I Sea Fish 6(4):1-42.
70 Alabaster, J. S. and R. L. Welcomme (1962), Effect of concentration of dissolved oxygen on survival of trout and roach in lethal temperatures. Nature 194:107.
${ }^{1}$ Allanson, B. R. and R. G. Noble (1964), The high temperature tolerance of Tilapia mossambica (Peters). Trans. Amer. Fish. Soc. 93(4):323-332.
${ }^{72}$ Alien, K. O. and K. Strawn (1968), Heat tolerance of channel catfish Ictalurus punctatus, in Proceedings of the 27st annual conference of the Southeastern Association of Game and Fish Commissioners (The Association, Columbia, South Carolina), pp. 399-411.
${ }^{73}$ Bishai, H. M. (1960), Upper lethal temperatures for larval salmonids. J. Cons. Cons. Perma. Int. Explor. Mer 25(2):129-133.
${ }^{4}$ Brett, J. R. (1952), Temperature tolerance of young Pacific salmon, genus Oncorhynchus. J. Fish. Res. Board of Can., 9(6): 265-323.
${ }^{76}$ Coutant, C. C. (1972), Time-temperature relationships for thermal resistances of aquatic organisms, principally fish [ORNL-EIS 72-27] Oak Ridge National Laboratory, Oak Ridge, Tennessee.
${ }^{76}$ Coutant, C. C. (1970), Thermal resistance of adult coho salmon (Oncorhynchus kisutch) and jack chinook (O. tshawytscha) salmon and adult steelhead trout Salmo gairdneri from the Columbia River. AEC Rept. No. BNWL-1580, Batelle Northwest, Richland, Wash.
${ }^{7}$ Craigie, D. E. (1963), An effect of water hardness in the thermal resistance of the rainbow trout, Salmo Gairdnerii, Can: J. Zool. 41(5):825-830.
${ }^{75}$ Doudoroff, P. (1942), The resistance and acclimatization of marine fishes to temperature changes. I. Experiments with Girella nigrieans (Ayres). Biol. Bull. 83(2):219-244.
${ }^{7}$ Doudoroff, P. (1945), The rēsistance and acclimatization of marine fishes to temperature changes. II. Experiments with Fundulus and Atherinops. Biol. Buill. 88(2):194-206.
${ }^{80}$ Edsall, T. A., D. V. Rottiers, and E. H. Brown (1970), Temperature tolerance of bloater (Coregonus hoyi). J. Fish. Res. Board Can. 27(11):2047-2052.
${ }^{81}$ Fry, F. E. J., J. R. Brett and G. H. Clawson (1942) Lethal limits of temperature for young goldfish. Rev. Can. Biol. 1:50-56. -
${ }^{82}$ Fry, F. E. J., and M. B. Gibson (1953), Lethal temperature experiments with speckled trout x lake trout hybrids. J. Hered. 44(2):56-57.
${ }^{33}$ Fry, F. E. J., J. S. Hart and K. F. Walker (1946), Lethal temperatures relations for a sample young speckled trout, Salvelinus fontinalis. Pbl. Ont. Fish. Res. Lab. No. 66; Univ. of Toronto Stud., Biol. Scr. No. 54, Univ. of Toronto press.
${ }^{84}$ Garside, E. T. and C. M. Jordan (1968), Upper lethal temperatures at various levels of salinity in the euryhaline Cyprinodontids Fundulus heteroclitus and F. diaphanus after isosomotic acclimation. J. Fish. Res. Board Can. 25(12):2717-2720.
${ }^{35}$ Gibson, E. S. and F. E. J. Fry (1954); The performance of the lake trout, Salvelinus namaycush, at various levels of temperature and oxygen pressure. Can. J. Zool. 32(3):252-260.
${ }^{36}$ Hair, J. R. (1971), Upper lethal temperature and thermal shock tolerances of the opossum shrimp, Neomysis awatschensis, from the Sacramento-San Joaquin estuary, California. Calif. Fish Game 57(1):17-27.
${ }^{4}$ Hart, J. S. (1947), Lethal temperature relations of certain fish of the Toronto region. Trans. Roy. Soc. Can. Sec. 5(41):57-71.
${ }^{4}$ Hart, J. S. (1952), Geographic variations of some physiological and morphological characters in certain freshwater fish [University of Toronto biology series no. 60] (The University of Toronto Press, Toronto), 79 p.
${ }^{88}$ Heath, W. G; (1967), Ecological significance of temperature tolerance in Gulf of California shore fishes. J. Ariz. Acad. Sci. 4(3):172-178.
${ }^{50}$ Hoff, J. G. and J. R. Westman (1966), The temperature tolerances of three species of marine fishes. F. Mar. Res. 24(2):131-140.
${ }^{11}$ Lewis, R. M. (1965), The effect of minimum temperature on the survival of larval Atlantic menhaden Brevoortia tyrannus. Trans. Amer. Fish. Soc. 94(4):409-412.
${ }^{92}$ Lewis, R. M. and W. F. Hettler, Jr. (1968), Effect of temperature and salinity on the survival of young Atlantic menhaden, Brevoortia tyrannus. Trans. Amer. Fish. Soc. 97(4):344-349.
${ }^{93}$ McCauley, R. W. (1958), Thermal relations of geographic races of Salvelinus. Can. 7. Zool. 36(5):655-662.
${ }^{4}$ McCauley, R. W. (1963), Lethal temperatures of the developmental stages of the sea lamprey, Petromyzon marinus L. ․ Fish. Res. Board Can. 20(2):483-490.
${ }^{95}$ Neill, W. H., Jr., K. Strawn, and J. E. Dunn (1966), Heat resistance experiments with the longear sunfish, Lepomis miegalotis (Rafinesque). Arkansas Acad. Sci. Proc. 20:39-49.
${ }^{98}$ Scott, D. P. (1964), Thermal resistance of pike (Esox lucius L.) muskellunge (E. masquinongy) Mitchill, and their F_{1} hybrids. 7. Fish. Res. Board Can. 21(5):1043-1049.
${ }^{97}$ Simmons, H. B. (1971), Thermal resistance and acclimation at various salinities in the sheepshead minnow (Cyprinodon variegatus Lacepede). Texas A\&M Univ. Soc. No. TAMU-SG-71-205.
${ }^{98}$ Smith, W. E. (1970), Tolerance of Mysis relicla to thermal shock and light. Trans. Amer. Fish. Soc. 99(2):418-422.
${ }^{99}$ Strawn, K. and J. E. Dunn (1967), Resistance of Texas salt- and freshwater marsh fishes to heat death at various salinities, Texas-T. Series, 1967:57-76.

References Cited

${ }^{100}$ Blahm, T. H. and R. J. McConnell, unpublished data (1970), Mortality of adult culachon Thaleichthys pacificus chinook slamon and coho salmon subjected to sudden increases in water temperature. (draft). Seattle Biological Laboratory, U.S. Bureau of Commercial Fisheries, Seattle.
${ }^{101}$ Blahm, T. H. and W. D. Parente, unpublished data (1970), Ėffects of temperature on chum salmon, threespine stickelback and yellow perch in the Columbia river, Seattle Biological Laboratory, U.S. Bureau of Commercial Fisheries, Seattle.
${ }^{102}$ Edsall, T. A. and P. A. Colby (1970), Temperature tolerance of young-of-the-year cisco, Coregonus artedii. Trans. Amer. Fish. Soc. 99(3):526-531.
${ }^{103}$ McConnell, R. J. and T. H. Blahm, unpublished data (1970), Resistance of juvenile sockeye salmon O. nerka to elevated water temperatures. (draft) Seattle Biological Laboratory, U.S. Bureau of Commercial Fisheries, Seattle.
${ }^{104}$ Smith, W. E. unpublished data (1971), Culture reproduction and temperature tolerance of Pontoporeia affinis in the laboratory. (draft) National Water Quality Laboratory, Duluth, Minnesota.
${ }^{105}$ Snyder, G. R. and T. H. Blahm, unpublished data (1970), Mortality of juvenile chinook salmon subjected to elevated water temperatures. (draft Man.) Seattle Biological Laboratory. U.S. Bureau of Commercial Fisheries, Seattle.

FISH TEMPERATURE DATA

Species: Alewife, Alosa pseudoharengus

'References on following page.

References

1. Edsal1, T. A. 1970. The effects of temperature on the rate of development and survival of alewife eggs and larvae. Trans. Amer. Fish. Soc. 99:376380.
2. Carrol1, E.W. and C. R. Norden. 1971. Temperature preference of the freshwater alewife, Alosa pseudoharengus. Abst. of paper presented at 33rd Midwest Wildlife Conference.
3. Tyus, H. M. 1974. Movements and spawning of anadromous alewives, Alosa pseudoharengus (Wilson) at Lake Mattamuskeet, North Carolina. Trans. Amer. Fish. Soc. 103:392-396.
4. Meldrim, J. W., J. J. Gift, and B.•R. Petrosky. 1974. Supplementary data on temperature preference and avoidance responses and shock experiments with estuarine fishes and macroinvertebrates. Ichthyological Associates, Inc., Middletown, Delaware. 56 p. mimeo.
5. Graham, J. J. 1956. Observations on the alewife, PomoZobus pseudoharengus (Wilson), in fresh water. Univ, of Toronto, Biol. Ser. No. 62:43p.

FISH TEMPERATURE DATA

Species: Atlantic salmon, Salmo salar

I. Lethal threshold:	acclimation temperature	larvae juvenile	adult	reference ${ }^{\text {l }}$
Upper	5	22*		1
	6	22		1
	10	23*		1
	20	23*		1
Lower	27.5	27.8**		8
		$* *$ days-after hatch		
II. Growth:	larvae	juvenile	adult	
Optimum and [range]	10(9)	16-18(4)		4,9
III. Reproduction:	optimum	range	month(s)	
Migration Spawning Incubation and hatch	adults 23 or less, smolt 10 or less			3
	4-6(3)	2-10(11)	$0 \mathrm{Cct-} \mathrm{\operatorname{Dec}(7)}$	3.7 .11
		3(3)-11(12)		3,12
IV. Preferred:	acclimation temperature	larvae juvenile	adult	
	4	14		2
	Summer	17(5)	14-16(6)	5,6
	-	- -	$\underline{14}$	10

[^6]
Atlantic salmon
 References

1. Bishai, H. M. 1960. Upper lethal temperatures for larval salmonids. Jou. Du Conseil. 25:129-133.
2. Fisher, Kenneth C. and P. F. Elson. 1950. The selected temperature of Atlantic salmon and speckled trout and the effect of temperature on the response to an electrical stimulus. Physiol. Zoology. 23:27-34.
3. Dexter, R. 1967. Atlantic salmon culture. U.S. Bur. Sport Fish. Wild1., Mimeo.
4. Markus, H. C. 1962. Hatchery reared Atlantic salmon smolts in ten months. Prog. Fish. Cult. 24:127-130.
5. Javoid, M. Y. and J. M. Anderson. 1967. Thermal acclimation and temperature selection in Atlantic salmon, Salmo salar, and rainbow trout, S. gairdnem. J. Fish. Res. Bd. Canada. 24(7):1515-1519.
6. Ferguson, R. G. 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. J. Fish. Res. Bd. Canada. 15:607-624.
7. Carlander, K. D. 1969. Handbook of Freshwater Fishery Biology. Vol. 1. Life History Data on Freshwater Fishes of the United States and Canada, Exclusive of the Perciformes. Iowa State Univ. Press, Ames, Iowa. 752 p.
8. Garside, E. T. 1973. Ultimate upper lethal temperature of Atlantic salmon, Salmo salar L. Can. J. Zoot. 51:898-900.
9. Marr, D. H. A. 1966. Influence of temperature on the efficiency of growth of salmonid embryos. Nature (London). 212:957-959.
10. Legett, W. C. and G. Power. 1969. Differences between two populations of landlocked Atlantic salmon (Salmo salar) in Newfoundland. J. Fish. Res. Bd. Canada. 16:1585-1596.
11. Jones, J. W. 1959. The Salmon. Collins Press, London. 192 p.
12. Spaas, J. T. and M. J. Heuts. 1958. Contributions to the Comparative Physiology and Genetics of the European Salmonidae. II. Physiologie et Génétique du Développement Embryonnaire. Hydrobiologia. 12:1-26.

FISH TEMPERATURE DATA

Species: Bigmouth buffalo, Ictiobus cyprinellus

${ }^{1}$ References on following page.

1. Canfield, H. L. 1922. Cited in: Johnson, R. P. 1963. Studies on the life history and ecology of the bigmouth buffalo, Ictiobus cyprine Zizus (Valenciennes). J. Fish. Res. Bd. Canada. 20:1397-1429.
2. Eddy, S. and J. C. Underhi11. 1974. Northern Fishes. University of Minnesota Press, Minneapolis. 414 pp .
3. Walburg, C. H. and W. R. Nelson. 1966. Carp, river carpsucker, smallmouth buffalo and bigmouth buffalo in Lewis and Clark Lake, Missouri River. U.S. Bur. Sport Fish. Wildl., Washington, D.C. Research Report 69. 29 p.
4. Harlan, J. R. and E. B. Speaker. 1956. Iowa Fish and Fishing. State Conservation Commission. 377 p.
5. Walker, M. C. and P. T. Frank. 1952. The propagation of buffalo. Prog: Fish. Cult. 14:129-130.
6. Swingle, H. S. 1957. Revised procedures for commercial production of bigmouth buffalo fish in ponds in the southeast. Proc. 10th Ann. Conf. S.E. Assoc. Game and Fish Comm. 1956. p. 162-165.
7. Gammon, J. R. 1973. The effects of thermal inputs on the population of fish and macroinvertebrates in the Wabash River. Purdue Univ. Water Resources Research Center, Lafayette, Indiana. Tech. Rept.. No. 32. 106 p.

FISH TEMPERATURE DATA

Species: Black crappie, Pomoxis nigromaculatus

[^7]
References

1. Neill, W. H., J. J. Magnuson and G. G. Chipman. 1972. Behavioral thermoregulation by fishes - new experimental approach. Science. 176:1442-1443.
2. Hokanson, K. E. F., and C. F. Kleiner. Effects of constant and diel fluctuations. in temperature on growth and survival of black crappie. Unpublished data, U. S. Environmental Protection Agency, Duluth, Minnesota.
3. Breder, C. M., and D. E. Rosen. 1966. Modes of reproduction in fishes. Nat. History Press. Garden City, New York. 941 p.
4. Goodson, L. F. 1966. Crappie: In: Inland Fisheries Management, A. Calhoun, ed., Calif. Dept. Fish and Game, p. 312-332.
5. Faber, D. J. 1967. Limnetic larval fish in northern Wisconsin lakes. J. Fish. Res. Bd. Canada. 24:927-937.
6. Neill, W. H., and J. J. Magnuson. 1974. Distributional ecology and behavioral thermoregulation of fishes in relation to heated effluent from a power plant at Lake Monona, Wisconsin. Trans. Amer. Fish. Soc., 103: 663-710.

FISH TEMPERATURE DATA

Species: Bluegill, Lepomis macrochirus

I. Lethal threshold:	acclimation temperature	larvae juvenile	adult	reference ${ }^{\text {' }}$
Upper	15(2), 12(8)	27(8)	31 (2)	2,8
	20		32	2
	25(2), 26(8)	36(8)	$33(2)$	2,8
	30	34		$\underline{2}$
	33	37		8
Lower	15(2), 12(8)	3 (8)	3(2)	2.8
	20			2
	25(2) , 26(8)	10(8)	7(2)	2,8
	30		11	2
	33	15		8
II. Growth:	larvae	juvenile	adult	
Optimum and [range]		30(10)	24-27(3)	3,10
		(22-34)(10) [[16(1)-30(4)]	1,4,10
III. Reproduction:	optimum	range	month(s)	
Migration Spawning	25(5)	19(5)-32(6)		1,5,6
Incubation and hatch	22-24	22-34		
IV. Preferred:	acclimation temperature	larvae juvenile	e adult	
	26 Aug (11)	$32(9,11)$)	2,11
	8 Nov	18		11
	3 Feb	16	-	11
	26 30 June June	31 32		11

[^8]
B7uegill

References

1. Emig, J. W. 1966. BTuegill sunfish. In: Inland Fisheries Management. A. Calhoun, ed., Calif. Dept. Fish and Game, p. 375-392.
2. Hart, J. S. 1952. Geographical variations of some physiological and morphological characters in certain freshwater fish. Univ. Toronto, Biol. Ser. No. 60. 78 p.
3. Anderson, R. 0. 1959. The influence of season and temperature on growth of the bluegill, Lepomis macrochimes. Ph.D. Thesis, Univ. Mich., Ann Arbor. 133 p.
4. Maloney, John E. 1949. A study of the relationship of food consumption of the bluegill, Lepomis macrochirus Rafinesque, to temperature. M.S. Thesis, Univ. of Minn., Minneapolis. 43 p.
5. Snow, H., A Ensign and John Klingbiel. 1966. The bluegill, its life history, ecology and management. Wis. Cons. Dept., Madison. Publ. No. 230. 14 p .
6. Clugston, J. P. 1966. Centrarchid spawning in the Florida Everglades. Quart. J. Fla. Acad. Sci. 29:137-143.
7. Cherry, D. S., K. L. Dickson, and J. Cairns, Jr. 1975. Temperatures selected and avoided by fish at various acclimation temperatures. J. Fish. Res. Bd. Canada. 32:485-491.
8. Banner, A., and J. A. Van Arman. 1972. Thermal effects on eggs, larvae and juveniles of bluegill sunfish. U. S. Environmental Protection Agency, Duluth, Minnesota. Report No. EPA-R3-73-041.
9. Ferguson, R. G. 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. J. Fish. Res. Bd. Canada. 15:607-624.
10. Lemke, A. E. 1977. Optimum temperature for growth of juyenile biluegills, Lepomis macrochirus Rafinesque. Prog. Fish Culturist. In press.
11. Peterson, S. E., R. M. Schutsky, and S. E. Allison. 1974. Temperature prefm erence, avoidance and shock experiments with freshwater fishes and crayfishes. Ichthyological Associates, Inc., Drumore, PA. Bulletin 10.

FISH TEMPERATURE DATA

Species: Brook trout, Salvelinus fontinalis

'References on following page.

Brook trout

References

1. Hokanson, K. E. F., J. H. McCormick, B. R. Jones, and J. H. Tucker. 1973. Thermal requirements for maturation, spawning and embryo survival of the brook trout, Salvelinus fontinalis (Mitchill). J. Fish. Res. Bd. Canada. 30(7):975-984.
2. McCormick, J. H., K. E. F. Hokanson, and B. R. Jones. 1972. Effects of temperature on growth and survival of young brook trout, Salvelinus fontinalis. J. Fish. Res. Bd. Canada. 29:1107-1112.
3. Fry, F. E. J., J. S. Hart, and K. F. Walker. 1946. Lethal temperature relations for a sample of young speckled trout, Salvelinus fontinalis. Univ. Toronto Studies, Biol. Ser. 54, Publ. Ontario Fish Res. Lab. 66:1.-35.
4. Cherry, D. S., K. L: Dickson, and J. Cairns, Jr. 1975. Temperatures selected and avoided by fishes at various acclimation temperatures. J. Fish. Res. Bd. Canada. 32:485-491.
5. McAfee, W. R. 1966. Eastern brook trout. In: Inland Fisheries Management, A. Calhoun, ed. Calif. Dept. Fish and Game. p. 242-264.
6. Eddy, S., and J. C. Underhill. 1974. Northern Fishes. University of Minnesota Press, Minneapolis. 414 p.

FISH TEMPERATURE DATA

Species: Brown bullhead, Ictaturus nebulosus

[^9]
Brown bullhead

References

1. Crawshaw, L. I. 1975. Attainment of the final thermal preferendum in brown bullheads acclimated to different temperatures. Comp. Biochem. Physiol. 52:171-173.
2. Meldrim, J. W., J. J. Gift, and B. R. Petrosky. 1974. Supplementary data on temperature preference and avoidance responses and shock experiments with estuarine fishes and macroinvertebrates. Ichthyological Associates, Inc., Middletown, Delaware. 56 p. mimeo.
3. Carlander, K. D. 1969. Handbook of Freshwater Fishery Biology, Vol. 1. Life History Data on Freshwater Fishes of the United States and Canada, Exclusive of the Perciformes. Iowa State Univ. Press, Ames, Iowa. 752 p .
4. Scott, W. B., and E. J. Crossman. 1973. Freshwater Fishes of Canada. J. Fish. Res. Bd. Canada, Ottawa, Ontario. Bull. 184. 966 p.
5. Hart, J. S. 1952. Geographical variations of some physiological and morphological characters in certain freshwater fishes. Univ. Toronto Biol. Ser. No. 60. 78 p.

FISH TEMPERATURE DATA

Species: \qquad
\qquad

[^10]
References

1. Stuart, T. A. 1953. Water currents through permeable gravels and their significance to spawning salmonids. Nature. 172:407-408.
2. Bishai, H. M. 1960. Upper lethal temperatures for larval salmonids. Jour. du Conseil. 25:129-133.
3. Staley, J. 1966. Brown trout. In: Inland Fisheries Management, A. Calhoun, ed. Calif. Dept. of Fish and Game. p. 233-242.
4. Frost, W. E., and M. E. Brown. 1967. The Trout, Collins Press, London. 286 p.
5. Spaas, J. T. 1960. Contribution to the comparative physiology and genetics of. the European salmonidae. III. Temperature resistance at different ages. Hydrobiologia. 15:78-88.
6. Tait, J. S. 1958. Cited in: Ferguson, R. G. 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. J. Fish. Res. Bd. Canada. 15:607-624.
7. Vernidub, M. F. 1963. Cited in: Brown, H. W. 1974. Handbook of the Effects of Temperature on Some Horth American Fishes. American Elect. Power. Service Corp., Canton, Ohio.
8. National Technical Advisory Committee. 1968. Water Quality Criteria. Fed. Water Poll. Control Admin. U. S. Department of the Interior. 234 p.
9. O'Donnell, D. J., and W. S. Churchill. 1954. Cited in: Carlander, K. D. 1969. Handbook of Freshwater Fishery Biology, Vol. J. Life History Data on Freshwater Fishes of the United States and Canada, Exclusive of the Perciformes. Iowa State Univ. Press, Ames, Iowa. 752 p.
10. Car1, G. C. 1938. A spawning run of brown trout in the Corvichan River system. J. Fish. Res. Bd. Canada Progr. Rep. Pac. 36:12-13.
11. Scott, W. B., and E. J. Crossman. 1973. Freshwater Fishes of Canada. J. Fish. Res. Bd. Canada, Ottawa, Ontario: Bull. 184. 966 p.

FISH TEMPERATURE DATA

Species: Carp, Cyprinus carpio

'References on following page.

References

1. Frank, M. L. 1973. Relative sensitivity of different stages of carp to thermal shock. Thermal Ecology Symposium, May 3-5, 1973, Augusta, Georgia.
2. Swee, U. B., and H. R. McCrimmon. 1966. Reproductive biology of the carp, Cyprinus carpio L., in Lake St. Lawrence, Ontario. Trans. Amer. Fish. Soc. 95:372-380.
3. Black, E. C. 1953. Upper lethal temperatures of some British Columbia freshwater fishes. J. Fish. Res. Bd. Canada. 10:196-210.
4. Sigler, W. F. 1958. The ecology and use of carp in Utah. Utah State Univ., Ag. Experiment Station. Bu11. 405. 63 p.
5. Carlander, K. 1969. Handbook of Freshwater Fishery Biology, Vol. 1. Life History Data on Freshwater Fishes of the United States and Canada, Exclusive of the Perciformes. Iowa State Univ. Press, Ames, Iowa. 752 p.
6. Pitt, T. K., E. T. Garside, and R. L. Hepburn. 1956. Temperature selection of the carp (Cyprinus carpio Linn.). Can. J. Zool. 34:555-557.
7. Burns, J. W. 1966. Carp. In: In7and Fisheries Management, A. Calhoun, ed. Calif. Div. Game and Fish, p. 510-515.
8. Gammon, J. R. 1973. The effect of thermal inputs on the population of fish and macroinvertebrates in the Wabash River. Purdue Univ. Water Resources Res. Center, Lafayette, Indiana. Tech. Rept. No. 32.
9. Tatarko, K. I. 1965. Cited in Brown, H. W. 1974. Handbook of the Effects of Temperature on Some North American Fishes. American Elect. Power Service Corp., Canton, Ohio.
10. Horoszewicz, L. 1973. Lethal and "disturbing" temperatures in some fish species from lakes with normal and artifically elevated temperatures J. Fish. Biol. 5:165-181.

FISH TEMPERATURE DATA

Species: Channel catfish, Ictalurus punctatus

I. Lethal threshold:	acclimation temperature	larvae	juvenile	adult	reference ${ }^{\text {l }}$
Upper	15		30*		2
	25(2) 26 (1)		37(1) 34(2)*	-	1,2
	29	31			3
	30		37		1
	34		38		1
Lower			*88-122 gram		2
	15	-	--	$\frac{0}{3}$	$\frac{2}{2}$
	25			6	2

II. Growth:
Optimum and
[range]
larvae
$29-30(3)$
$(27-31)(3)$
III. Reproduction:
Migration -
Spawning

$$
\begin{aligned}
& \underline{\text { optimum }} \\
& \hline \\
& \hline
\end{aligned}
$$ Incubation and hatch

juvenile	adult	
28-30(8)		3,8
(26-34)(4)	-	3,4
-		-
range	month(s)	
21-29(5)	$\operatorname{Mar}(10)-\mathrm{July}(6)$	-5,6,10
24-28(5)		5

IV. Preferred:	acclimation temperature	larvae	juvenile	$\frac{\text { gdult }}{30-32^{*}}$	7
	Summer				
	$2 \operatorname{Jan}(11)$		11(11)	32**(9)	9,11
	22		35		11
	29		35	1d	11

[^11]
Channel catfish

References

1. Allen, K. 0., and K. Strawn. 1968. Heat tolerance of channel catfish, Ictalurus punctuatus. Proc. 21st Ann. Conf. S.E. Assoc. Game and Fish Comm., 1967, p. 399-411.
2. Hart, J. S. 1952. Geographical variations of some physiological and morphological characters in certain freshwater fish. Univ. Toronto, Toronto, Ontario. Biological Series No. 60.
3. West, B. W. 1966. Growth, food conversion, food consumption, and survival at various temperatures of the channel catfish, Ictalurus punctatus (Rafinesque). M.S. Thesis, Univ. Ark., Tuscon, Ark.
4. Andrews, J. W., and R. R. Stickney. 1972. Interaction of feeding rate and environmental temperature of growth, food conversions, and body composition of channel catfish. Trans. Amer. Fish. Soc. 101:94-97.
5. Clemens, H. P., and K. F. Sneed. 1957. The spawning behavior of the channel catfish, Ictalurus punctatus. U. S. Fish. Wildl. Serv., Special Sci. Rept. Fish No. 219.
6. Brown, L. 1942. Propagation of the spotted channel catfish, Ictazurus Zacustris punctatus. Kan. Acad. Sci. Trans. 45:311-314.
7. Gammon, J. R. 1973. The effect of thermal inputs on the populations of fish and macroinvertebrates in the Wabash River. Purdue Univ. Water Resources Res. Center, Lafayette, Indiana. Tech. Rept. 32. 106 p.
8. Andrews, J. W., L. H. Knight, and T. Murai. 1972. Temperature requirements for high density rearing of channel catfish from fingerling to market size. Prog. Fish. Cult. 34:240-241.
9. Kilambi, R. V., J. Noble, and C. E. Hoffman. 1970. Influence of temperature and food conversion efficiency of the channel catfish. Proc. 24th Ann. Conf. S.E. Assoc. Game and Fish Comm., 1969, p. 519-531.
10. Stevens, R. E. 1959. The white and channel catfishes of the Santee-Cooper Reservoir and Tailrace Sanctuary. Proc. 13th Ann. Conf. S.E. Assoc. Gane and Fish. Comm., 1959, p. 203-219.
11. Peterson, S. E., R. M. Schutsky, and S. E. A1lison. 1974. Temperature preference, avoidance, and shock experiments with freshwater fishes and crayfishes. Ichthyological Associates, Inc., Drumore, Pennsylvania. Bul1. 10.

FISH TEMPERATURE DATA

Species: Coho salmon, Oncorhynchus kisutch

1

'References on following page.

Coho salmon
References

1. Brett, J. R. 1952. Temperature tolerance in young Pacific salmon, genus Oncorhynchus. J. Fish. Res. Bd. Canada. 9:265-323.
2. Great Lakes Research Laboratory. 1973. Growth of lake trout in the laboratory. Progress in Sport Fishery Research. 1971. USDI, Fish and Wildlife Service, Bureau of Sport Fisheries and Wildlife. p. 100 and 107.
3. U. S. Environmental Protection Agency. 1971. Columbia River thermal effects study, Vol. 1. Biological Effects Studies. 95 p.
4. Edsa11, T. 1970. U. S. Dept. of Int., Great. Lakes Fishery Laboratory, Ann Arbor, Michigan. Personal communication.
5. Burrows, R. E. 1963. Water temperature requirements for maximum productivity of salmon. Proc. 12th Pacific N. W. Symposium on Water Poll. Res., Nov. 7, 1963, Corvallis, Oregon. p. 29-38.
6. Averett, R. C. 1968. Influence of temperature on energy and material utilization by juvenile coho salmon. Ph.D. Thesis, Oregon State Univ., Corvallis, Oregon.
7. Shapovalov, L. and A. C. Taft. 1954. Cited in: Schuytema, G. 1969. Literature review, effects of temperature on Pacific salmon, Appendix A. In: Thermal Pollution: Status of the Art, Parker, F. L. and R. A. Krenkel, ed. Vanderbilt Univ., Nashville, Tennessee. Rept. No. 3. 317 p.

FISH TEMPERATURE DATA

Species:

Emerald shiner, Notropis atherinoides

[^12]
Emerald shiner

References

1. Carlander, R. D. 1969. Handbook of Freshwater Fishery Biology, Vol. 1. Life History Data on Freshwater Fishes of the United States and Canada, Exclusive of the Perciformes. Iowa State Univ. Press, Ames, Iowa. 752 p.
2. McCormick, J. H., and C. F. Kleiner. 1976. Growth and survival of young-of-the-year emerald shiners (Notropis atherinoides) at different temperatures. J. Fish. Res. Bd. Canada. 33:839-842.
3. Campbell, J. S., and H. R. MacCrimmon. 1970. Biology of the emerald shiner Notropis atherinoides Rafinesque in Lake Simcoe, Canada. J. Fish. Biol. 2:259-273.
4. Flittner, G. A. 1964. Morphometry and life history of the emerald shiner Notropis atherinoides Rafinesque. Ph.D. Thesis, Univ. of Mich., Ann Arbor, Michigan.
5. Gray, J. W. 1942. Studies on Notropis atherinoides atherinoides Rafinesque in the Bass Islands Region of Lake Erie. M.S. Thesis, Ohio State Univ., Columbus, Ohio.

FISH TEMPERATURE DATA

Species: Fathead minnow, Pimephales promelas

I. Lethal threshold:	acclimation temperature	larvae juvenile	adult	ference'
Upper				
Lower		\cdots		
II. Growth:	Iarvae	¡uvenile	adult	
Optimum and [range]			23.5-30	1
		-	-	
		-	-	-
III. Reproduction:	optimum	range	month(s)	
Migration		18(2)-30(1)	\cdots	
	23.5(1)		May-Aug(2)	1,2
Incubation	23-28	23.5-30		1
V. Preferred:	acclimation temperature	larvae juvenile	adult	

${ }^{1}$ References on following page.

Fathead minnow

References

1. Brungs, W. A. 1971. Chronic effects of constant elevated temperature on the fahead minnow (Pimephales promelas Rafinesque). Trans. Am. Fish. Soc. 100:659-664.
2. Carlson, D. R. 1967. Fathead minnow, Pimephales promelas Rafinesque, in the Des Moines River, Boon County, Iowa, and the Skunk River Drainage, Hamilton and Story Counties, Iowa. Iowa State J. Science. 41:363-374.

FISH TEMPERATURE DATA

Species: Freshwater drum, Aplodinotus grunniens

'References on following page.

1. Wrenn, B. B. 1969. Life history aspects of smailmouth buffalo and freshwater drum in Wheeler Reservoir, Alabama. Proc. 22nd Ann. Conf. S.E. Assoc. Game and Fish Comm., 1967. p. 479-495.
2. Davis, C. C. 1959. A planktonic fish egg from freshwater. Limn. Ocean. 4:352-355.
3. Edsall, T. A. 1967. Biology of the freshwater drum in Western Lake Erie. Ohio J. Sci. 67:321-340.
4. Swedberg, D. V., and C. H. Walburg. 1970. Spawning and early life history of the freshwater drum in Lewis and Clark Lake, Missouri River. Trans: Am. Fish. Soc. 99:560-571.
5. Gammon, J. R. 1973. The effect of thermal inputs on the populations of fish and macroinvertebrates in the Wabash River. Purdue Univ. Water Resources Research Center, Lafayette, Indiana. Tech. Rept. 32. 106 p.

FISH TEMPERATURE DATA

Species: Lake Herring (cisco), Coregonus artedii

'References on following page.

Lake herring (cisco).

References

1. Colby, P. J., and L. T. Brooke. 1970. Survival and development of the herring (Coregonus artedii) eggs at various incubation temperatures. In: Biology of Coregonids, C. C. Lindsay and C. S. Woods, ed. Univ. Manitoba, Winnipeg, Manitoba, Canada. pp. 417-428.
2. McCormick, J. H., B. R. Jones, and R. F. Syrett. 1971. Temperature requirements for growth and survival of larval ciscos (Coregonus artedii). J. Fish. Res. Bd. Canada. 28:924-927.
3. Edsall, T. A., and P. J. Colby. 1970. Temperature tolerance of young-of-the-year cisco, Coregonus artedii. Trans. Amer. Fish. Soc. 99:526-531.
4. Frey, D. G. 1955. Distributional ecology of the cisco (Coregonus artedii). 'Investigations of Indiana Lakes and Streams. . 4:177-228.
5. Colby, P. J., and L. T. Brooke. 1969. Cisco (Coregonus artedii) mortalities in a Southern Michigan lake, July 1968. Limn. Ocean. 14:958-960.
6. Dryer, W. R., and J. Beil. 1964. Life history of lake herring in Lake Superior. U.S. Fish. Bull. 63:493-530.
7. Cahn, A. R. 1927. An ecological study of southern Wisconsin fishes, the brook siversides (Labidesthes sicculus) and the cisco (Leucichthys artedii, LeSueur). I11. Biol. Monogr.. 11:1-151.
8. Carlander, K. D. 1969. Handbook of Freshwater Fishery Biology, Vol. 1. Life History Data on Freshwater Fishes of the United States and Canada, Exclusive of the Perciformes. Iowa State Univ. Press, Ames, Iowa. 752 p.

FISH TEMPERATURE DATA

Species: Lake trout, Salvelinus nomayoush

[^13]
Lake trout

References

1. Edsall, T. A., and W. E. Berlin. 1973. In: Progress in Fishery Research 1973, Eschmeyer, P. H., and J. Kutkuhn, eds. U. S. Fish and Wildiffe Service, Great Lakes Fishery Laboratory. Ann Arbor, Michigan.
2. Carlander, K. D. 1969. Handbook of Freshwater Fishery Biology, Vol. 1. Life History Data on Freshwater Fishes of the United States and Canada, Exclusive of the Perciformes. Iowa State Univ. Press, Ames, Iowa. 752 p.
3. Royce, W. F. 1951. Breeding habits of Take trout in New York. Fishery Bull. 52:59-76.
4. McCauley, R. W., and J. S. Tait. 1970. Preferred temperature of yearling lake trout, Salvelinus namaycush. J. Fish. Res. Bd. Canada. 27:1729-1733.
5. Ferguson, R. G. 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. J. Fish. Res. Bd. Canada. 15:607-624.

FISH TEMPERATURE DATA

Species: Lake whitefish, Coregonus clupeaformis

IV. Preferred: \begin{tabular}{l}

acclimation
temperature

\hdashline

\hdashline
\end{tabular}

\qquad

[^14]
Lake whitefish

References

1. Brooke, L. T. 1975. Effect of different constant incubation temperatures on egg survival and embryonic development in lake whitefish (Coregonus clupeaformis). Trans. Amer. Fish. Soc. 3:555-559.
2. Carlander, K. D. 1969. Handbook of Freshwater Fishery Biology, Vol. 1. Life History Data on Freshwater Fishes of the United States and Canada, Exclusive of the Perciformes. Iowa State Univ. Press, Ames, Iowa. 752 p.
3. Ferguson, R. G. 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. J. Fish. Res. Bd. Canada. 15:607-624.

FISH TEMPERATURE DATA

Species: Largemouth bass, Micropterus salmoides

[^15]
Largemouth bass

References

1. Hart, J. S. 1952. Geographic variations of some physiological and. morphological characters in certain freshwater fish. Univ. Toronto, Toronto, Ontario. Biological Series No. 60.
2. Strawn, Kirk. 1961. Growth of largemouth bass fry at various temperatures Trans. Amer. Fish. Soc. 90:334-335.
3. Kramer, R. H., and L. L. Smith, Jr. 1962. Formation of year class in largemouth bass. Trans. Amer. Fish. Soc. 91:29-41.
4. Clugston; J. P. 1966. Centrarchid spawning in the Florida Everglades: Quart. J. Fla. Acad. Sci. 29:137-143.
5. Badenhuizen, T. 1969. Effect of incubation temperature on mortality of embryos of largemouth bass, Micropterus salmoides Lacepede. M.S. Thesis, Cornell University, Ithaca, New York.
6. Kelley, J. W. 1968. Effects of incubation temperature on survival of largemouth bass eggs. Prog. Fish. Cult. 30:159-163.
7. Ferguson, R. G. 1958. The preferred temperature of fish and their. midsummer distribution in temperate lakes and streams. J. Fish. Res. Bd. Canada. 15:607-624.
8. Lee, R. A. 1969. Bioenergetics of feeding and growth of largemouth bass in aquaria and ponds. M.S. Thesis, Oregon State University, Corvallis, Oregon.
9. Carr, M. H. 1942. The breeding habits, embryology and larval development of the largemouth black bass in Florida. Proc. New Eng'. Zool. Club. 20:43-77.
10. Johnson, M. G., and W. H. Charlton. 1960. Some effects of temperature on metabolism and activity of largemouth bass Micropterus salmoides Lacepede. Prog. Fish. Cult. 22:155-163.
11. Markus, H. C. 1932. Extent to which temperature changes influence food consumption in largemouth bass (Huro floridans). Trans. Am. Fish. Soc. 62:202-210.

FISH TEMPERATURE DATA

Species: Northern pike, Esox Lucius

I. Lethal threshold:	acclimation temperature	larvae	juvenile	adult	reference ${ }^{\text {e }}$
Upper	18	25,28*			2
	25		32		1
	27		33		1
	30		$33 * *$		7
Lower		$\begin{aligned} & \text { thatch } \\ & \text { limatimate } \end{aligned}$	free swimn ipient leve	$n \overline{\mathrm{~g}, \text { respe }}$	tively
	18	3*			2

II. Growth:
Optimum and
[range]
$\frac{\frac{\text { larvae }}{21}}{(18-26)}$

juvenile 26 \square \square

optimum | \square |
| :--- |
| $-\quad 12$ |

range

7-19
odult
\qquad month(s) 4(4)-18(3) Feb-June(5) $3,4,5$

2 $\underline{ }$
acclimation
temperature larvae juvenile adult

*Grass pickerel and musky, respectively

[^16]
References

1. Scott, D. P. 1964. Thermal resistance of pike (Esox tucius L.), muskellunge (E. masquinongy, Mitchell), and their F_{1} hybrid. J. Fish. Res. Bd. Canada. 21:1043-1049.
2. Hokanson, K. E. F., J. H. McCormick, and B. R. Jones. 1973. Temperature requirements for embryos and larvae of the northern pike, Esox lucius (Linnaeus). Trans. Amer. Fish. Soc. 102:89-100.
3. Fabricus, E., and K. J. Gustafson. 1958. Some new observations on the spawning behavior of the pike, Esox Zucius L. Rep. Inst. Freshwater Res., Drottningholm, Sweden. 39:23-54.
4. Threinen, C. W., C. Wistrom, B. Apelgren, and H. Snow. 1966. .The northern pike, its life history, ecology, and management. Wis. Con. Dept., Madison, Publ. No. 235. 16 p.
5. Toner, E. D., and G. H. Lawler. 1969. Synopsis of biological data on the pike Esox Zucius (Linnaeus 1758). Food and Ag. Org. Fisheries synopsis No. 30, Rev. 1. Rome. 37 p.
6. Ferguson, R. G. 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. J. Fish. Res. Bd. Canada. 15:607-624.

FISH TEMPERATURE DATA

Species: Pumpkinseed, Lepomis gibbosus

I. Lethal threshold: Upper	acclimation temperature	lar	juv	adu	reference ${ }^{\text {' }}$
Lower					
				-	
				-	
II. Growth:	larvae	juvenile		adult	
Optimum and [range]	-		-	$\frac{30}{15-?}$	$\frac{1}{1}$
	\square			15-?	
		range			
III. Reproduction:	optimum			month(s)	
Migration Spawning Incubation and hatch					
			20-29	May-Aug	3
IV. Preferred:	acclimation temperature	larvae	e juvenile	adult	
	19 May		21		2
	24 June		31		2
	26 Sept		33	-	2
	8 Nov		10		2

'References on following page.

Pumpkinseed

References

1. Pessah, E., and P. M. Powles. 1974. Effect of constant temperature on growth rates of pumpkinseed sunfish (Lepomis gibbosus). J. Fish. Res. Bd. Canada. 31:1678-1682.
2. Peterson, S. E., R. M. Schtusky, and S. E. Allison. 1974. Temperature preference, avoidance and shock experiments with freshwater fishes and crayfishes. Ichthyological Associates, Inc., Drumore, Pennsylvania. Bulletin 10.
3. Breder, C. M., Jr. 1936. The reproductive habits of the North American sunfishes (family centrarchidae). Zoologica. 21:1-48.

FISH TEMPERATURE DATA
Species: Rainbow smelt, Osmerus mordax

I. Lethal threshold:	acclimation temperature	larvae juvenile	adult	reference'
Upper				
			-	-
Lower	.			
	-	-	_ _	-
II. Growth:	larvae	juvenile	adult	
Optimum and [range]		-	-	
	-			
	-		-	
III. Reproduction:	optimum	range	month(s)	
Migration Spawning Incubation and hatch	4-5			1
		0.6-15	Apri1	2
	-	5-15		3
IV. Preferred:	acclimation temperature	larvae juvenile	gdult	
			6-14	4
		-	-	
	-	- -	-	\square

Rainbow smelt

References

1. McKenzie, R. A. 1964. Smelt life history and fishery in the Miramichi River, New Brunswick. J. Fish. Res. Bd. Canada, Ottawa, Ontario. Bull. 144. 77 p.
2. Hale, J. G. 1960. Some aspects of the life history of the smelt (Osmerus mordax) in Western Lake Superior. Minn. Fish \& Game Invest. Fish Ser. 2:25-41.
3. Carlander, K. D. 1969. Handbook of Freshwater Fishery Biology, Vol. 1. Life History on Freshwater Fishes of the United States and Canada', Exclusive of the Perciformes. Iowa State. Univ. Press, Ames, Iowa. 752.p.
4. Wells, L. 1968. Seasonal depth distribution of fish in southeastern Lake Michigan. Fishery Bull. 67:1-15.

FISH TEMPERATURE DATA

Species: Rainbow trout, Salmo gairaneri

1. Lethal threshold acclimation

II. Growth:
Optimum and
[range]

> larvae
juvenile
gdult 17-19 -
\qquad
III. Reproduction:
optimum $\frac{\text { range }}{5-13(6)}$
$5-13(4)$ month(s) Migration Spawning Incubation and hatch 5-7(9)
IV. Preferred:

acclimation temperature	larvae	juvenile Not given	$\frac{14}{\text { adult }}$
	$\frac{13-20}{18824}$	$\frac{13-19}{18 \& 22, \text { resp. }}$	$=$

'References on following page.

1. Alabaster, J. S., and R. L. Welcomme. 1962. Effect of concentration of dissolved oxygen on survival of trout and roach in lethal temperatures. Nature (London). 194(4823):107.
2. Coutant, C. C. 1970. Thermal resistance of adult coho (Oncorhynchus kisutch) and jack chinook (0 . tshowytscha) salmon, and the adult steelhead trout (Salmo gairdnerii) from the Columbia River. Atomic Energy Commission, Battelle Northwest Laboratory, Richland, Washington, publication No. 1508, 24 p.
3. Ferguson, R. G. 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. J. Fish. Res. Bd. Canada. 15:607-624.
4. McAfee, W. R. 1966. Rainbow trout. In: Inland Fisheries Management, A. Calhoun, ed. Calif. Dept. Fish and Game. pp. 192-215.
5. Hokanson, K. E. F., C. F. Kleiner, and T. W. Thorslund. 1976. Effects of constant temperature and diel fluctuation on specific growth, mortality, and yield of juvenile rainbow trout, Salmo gairdneri (Richardson). MS submitted to J. Fish. Res. Bd. Canada.
6. Rayner, H. J. 1942. The spawning migration of rainbow trout at Skaneateles Lake, New York. Trans. Amer. Fish. Soc. 71:180-83.
7. Carlander, K. D. 1969. Handbook of Freshwater Fishery Biology, Vol. 1. Life History Data on Freshwater Fishes of the United States and Canada, Exclusive of the Perciformes. Iowa State Univ. Press, Ames, Iowa. 752 p.
8. Vojno, T. 1972. The effect of starvation and various doses of fodder on the changes of body weight and chemical composition and the survival rate in rainbow trout fry (Salmo gairdneri, Richardson) during the winter. Roczniki Nauk Rolniczych Series H - Fisheries 94, 125. In: Coutant, C. C., and H. A. Pfuderer. 1973. Thermal effects. J. Water Poll. Fed. 46:1476-1540.
9. Timoshina, L. A. 1972. Embryonic development of the rainbow trout (Salmo gairdneri irideus, Gibb.) at different temperatures. Icthyol. (USSR). 12:425.
10. Johnson, Charles E. 1971. Factors affecting fish spawning. Wisconsin Cons. Bull. July-Aug.
11. Mantelman, I. I. 1958. Cited in: Brown, H. W. 1974. Handbook of the Effects of Temperature on Some North American Fishes. American Elect. Power Service Corp., Canton, Ohio.
12. Cherry, D. S., K. L. Dickson, and J. Cairns, Jr. 1975. Tempèratures selected and avoided by fish at various acclimation temperatures. J. Fish. Res. Bd. Canada. 32:485-491.

FISH TEMPERATURE DATA

Species: Sauger, Stizostedion canadense

[^17]
Sauger

References

1. Nelson, W. R. 1968. .Reproduction and early life history of sauger, Stizostedion canadense, in Lewis and Clark Lake. Trans. Amer. Fish. Soc. 97:159-166.
2. Ferguson, R. G. 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. J. Fish. Res. Bd. Canada. 15:607-624.
3. Carufel, Louis H. 1963. Life history of saugers in Garrison Reservoir. J. Wildl. Manag. 27(3):450-456.
4. Smith, L. L., Jr., and W. M. Koenst. 1975. Temperature effects on eggs and fry of percoid fishes. U. S. Environmental Protection Agency, Duluth, Minnesota. Report EPA-660/3-75-017. 91 p.
5. Gammon, J. R. 1973. The effect of thermal input on the populations of fish and macroinvertebrates in the Wabash River. Purdue Univ. Water Resources Res. Center, Lafayette, Indiana. Tech. Rept. 32. 106 p.

FISH TEMPERATURE DATA

Species: Sma11mouth bass, Micropterus dolomieui

[^18]
References

1. Munther, G. L. 1970. Movement and distribution of smallmouth bass in the Middle Snake River. Trans. Amer. Fish. Soc. 99:44-53.
2. Peek, F. W. 1965. Growth studies of laboratory and wild population samples of smallmouth bass, Micropterus doIomieui Lacepede, with applications to mass marking of fishes. M.S. Thesis. Univ. Ark., Fayetteville. 115 p.
3. Horning, W. B., and R. E. Pearson. 1973. Growth temperature requirements and lower lethal temperatures for juvenile smallmouth bass (Micropterus dolomieui). J. Fish. Res. Bd. Canada. 30:1226-1230.
4. Ferguson, R. G. 1958. The preferred temperature of fish and their midsummer distribution in temperate-lakes and streams. J. Fish. Res. Bd. Canada. 15:607-624.
5. Breder, C. M., and D. E. Rosen. 1966. Modes of reproduction in fishes. Natural History Press, Garden City, New York. 941 p.
6. Emig, J. W. 1966. Smallmouth bass. In: Inland Fisheries Management, A. Calhoun, ed. Calif. Dept. Fish and Game. pp. 354-366.
7. Surber, E. W. 1943. Observations on the natural and artificial propagation of the smallmouth black bass, Micropterus doZomieui. Trans. Amer. Fish. Soc. 72:233-245.
8. Larimore, R. W., and M. J. Duever. 1968. Effects of temperature acclimation on the swimming ability of smallmouth bass fry. Trans. Amer. Fish. Soc. 97:175-184.
-9. Tester, A. L. 1931. Cited in: Wallace, C. R. 1973. Effects of temperature on developing meristic structures of smallmouth bass, Micropterus dolomieui Lacepede. Trans. Amer. Fish. Soc. 102:142-144.
9. Webster, D. A. 1945. Relation of temperature to survival and incubation of the eggs of smallmouth bass (Micropterus doLomieui). Trans. Amer. Fish. Soc. 75:43-47.
10. Cherry, D. S., K. L. Dickson, and J. Cairns, Jr. 1975. Temperatures selected and avoided by fish at various acclimation temperatures. J. Fish. Res. Bd. Canada. 32:485-491.

FISH TEMPERATURE DATA

Species: Smallmouth buffalo, Ictiobus bubatus

${ }^{1}$ References on following page.

1. Wrenn, W. B. 1969. Life history aspects of smallmouth buffalo and freshwater drum in Wheeler Reservoir, Alabama. Proc. 22nd Ann. Conf. S.E. Assoc. Game \& Fish Comm., 1968. pp. 479-495.
2. Walburg, C. H., and W. R. Nelson. 1966. Carp, river carpsucker, smallmouth buffalo and bigmouth buffalo in Lewis and Clark Lake, Missouri River. U. S. Bur. Sport Fish. Wildl., Washington, D. C. Res. Rep. 69. 29 p.
3. Walker, M. C., and P. T. Frank. 1952. The propagation of buffalo. Prog. Fish. Cult. 14:129-130.
4. Gammon, J. R. 1973. The effect of thermal input on the populations of fish and macroinvertebrates in the Wabash River. Purdue Univ. Water Resources Research Center, Lafayette, Indiana: Tech. Rept. 32.106 p.
5. Jester, D. B. 1973. Life history, ecology, and management of the smallmouth buffalo, Ictiobus bubalus (Rafinesque), with reference to Elephant Butte Lake. New Mexico State Univ., Las Cruces. Ag. Exp. Sta. Res. Rept. 261. 111 p .

Species: Sockeye salmon, oncorhynchus nerka

[^19]1. Brett, J. R. 1952. Temperature tolerance in young Pacific salmon, genus, Oncorhynchus. J. Fish. Res. Bd. Canada. 9:265-323.
2. Griffiths, J. S., and D. F. Alderdice. 1972. Effects of acclimation and acute temperature experience on the swimming speed of juvenile coho salmon. J. Fish. Res. Bd. Canada. 29:251-264.
3. Ferguson, R. G. 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. J. Fish. Res. Bd. Canada. 15:607-624.
4. Burrows, R. E. 1963. Water temperature requirements for maximum productivity of salmon. Proc. 12th Pacific N.W. Symposium on Water Poll. Res.., Nov. 7, 1963, Corvallis, Oregon: pp. 29-32.
5. Shelbourn, J. E., J. R. Brett, and S. Shirahata. 1973. Effect of temperature and feeding regime on the specific growth rate of sockeye salmon fry (Oncorhynchus nerka) with a consideration of size effect. J. Fish. Res. Bd. Canada. 30:1191-1194.
6. U. S. Environmentaj Protection Agency. 1971. Columbia River thermal effects study, Vol. 1: Biological Effects Studies. 95 .p.
7. Donaldson, L. R., and F. J. Foster. 1941. Experimental study of the effects of various water temperatures on growth, food utilization and mortality of fingerling sockeye salmon. Trans. Amer. Fish. Soc. 70:339-346.

FISH TEMPERATURE DATA
Species: Striped bass, Morone saxatilis

IV. Preferred:	acclimation temperature		larvae	$\frac{\text { iuvenile }}{12}$	adult	
	5	Dec				3
	14	Nov		22		3
	21	Oct		26		3
	28	July		28		3

[^20]1. Shannon, E. H. 1970. Effect of temperature changes upon developing striped bass eggs and fry. Proc. 23rd Conf. S.E. Assoc. Game and Fish Comm., October 19-22, 1969. pp. 265-274.
2. Talbot, G. B. 1966. Estuarine environmental requirements and limiting factors for striped bass. In: A Symposium on Estuarine Fisheries. Amer. Fish. Soc., Special Publ. No. 3. pp. 37-49.
3. Meldrim, J. W., J. J. Gift, and B. R. Petrosky. 1974. Suppiementary data on temperature preference and avoidance responses and shock experiments with estuarine fishes and macroinvertebrates. Ichthyological Associates, Inc., Middletọnn, Delaware. 56 p. mimeo.

FISH TEMPERATURE DATA

Species: Threadfin shad, Dorosoma petenense

'References on following page.

Threadfin shad References

1. Strawn, K. 1963. Resistance of threadfin shad to low temperatures, Proc. 17th Ann. Conf. S.E. Assoc. Game and Fish Cormm., 1962. pp. 290-293.
2. Adair, W. D., and D. J. DeMont. 1970. Effects of thermal pollution upon Lake Norman fishes. N. Carolina Wildlife Res. Conm., Div. Inland Fisheries, Raleigh, North Carolina. Summary Report, Fed. Aid Fish Restoration Project F-19-2. 14 p:
3. Carlander, K. D. 1969. Handbook of Freshwater Fishery Biology, Vol. 1. Life History Data on Freshwater Fishes of the United States and Canada, Exclusive of the Perciformes. Iowa State Univ. Press, Ames, Iowa. 752 p.
4. Shelton, W. L. 1964. The threadfin shad, Dorosoma petenense (Gunther): Oogenesis, seasonal ovarian changes and observations in life history. M.S. Thesis, Oklahoma State Univ., Norman. 49 p.
5. Hubbs, C., and C. Bryan. 1974. Maximum incubation temperature of the threadfin shad, Dorosoma petenense. Trans...Amer. Fish. Soc. 103:369-371.

FISH TEMPERATURE DATA

Species: Walleye, Stizostedion vitreum

[^21]
Walleye

References

1. Smith, L. L., Jr., and W. M. Koenst. 1975. Temperature effects on eggs and fry of percoid fiishes. U. S. Environmental Protection Agency, Duluth Minnesota. Report EPA-660/3-75-017, 91 p.
2. Ferguson, R. G. 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams.. J. Fish. Res. Bd. Canada. 15:607-624.
3. Dendy, J. S. 1948. Predicting depth distribution of fish in three TVA storage reservoirs. Trans. Amer. Fish. Soc. 75(1945):65-71.
4. Eddy, Samuel, and T. Surber. 1943. Northern Fishes with Special Reference to the Upper Mississippi Valley. Univ. Minn. Press, Minneapolis. 276 p.
5. Niemuth, W., W. Churchill, and T. Wirth. 1959. The walleye, its life history, ecology, and management. Wisc. Cons. Dept., Madison. Pub. 227. 14 p.
6. Kelso, John R. M. 1972. Conversion, maintenànce, and assimilation for walleye, Stizostedion vitreum vitreum, as affected by size, diet, and. temperature. J. Fish. Res. Bd. Canada. 29:1181-1192.
7. Grimstead, Bobby G. 1971. Reproduction and some aspects of the early life history of walleye, Stizostedion vitreum (Mitchell), in Canton Reservoir, Oklahoma. In: Reservoir Fisheries and Limnology. Amer. Fish. Soc., Washington, D. C. Spec. Pub. No. 8. G. Hall, ed. pp. 41-51.

FISH TEMPERATURE DATA
Species: White bass, Morone chrysops

N. Preferred: \begin{tabular}{c}

acclimation
temperature
Summer

\hdashline

larvae \& juvenile \& | adult |
| :--- |

\hline
\end{tabular}

[^22]
White bass

References

1. Webb, J. F., and D. D. Moss. 1967. Spawning behavior and age and growth of white bass in Center Hill reservoir, Tennessee. M.S. Thesis, Tenn. Tech. Univ.
2. Yellayi, R. R. 1972. Ecological life history and population dynamics of white bass, Morone chrysops (Rafinesque) in Beaver Reservoir. Part 2. A contribution to the dynamics of white bass, Morone chrysops (Rafinesque) population in Beaver Reservoir, Arkansas. Report to Arkansas Game and Fish Commission. Univ. of Arkansas., Fayetteville.
3. Duncan, T. O., and M. R. Myers. Artificial rearing of white bass, Roccus chrysops, Rafinęsque. Unpublished data. South Central Reservoir Investigations, Bureau Sport Fisheries and Wildlife, Fayetteville, Arkansas.
4. Ruelle, R. 1971. Factors influencing growth of white bass in Lewis and Clark Lake. In: Reservoir Fisheries and.Limnology. Amer. Fish. Soc. Washington, D. C. Spec. Pub. No. 8. G. Hall, ed., pp. 411-423.
5. Gammon, J. R. 1973. The effect of thermal input on the populations of fish and macroinvertebrates in the Wabash River. Purdue Univ. Water Resources Research Center, Lafayette, Indiana. Tech. Rept. 32. 106 p.
6. McCormick, J. H. 1976. Temperature effects on white bass (Morone chrysops) embryo development, and survival of one-day-old larvae. U. S. Environmental Protection Agency, Duluth, Minnesota. In preparation.
7. McCormick, J. H. 1976. Temperature effects on the growth of juyenile white bass. U. S. Environmental Protection Agency, Duluth, Minnesota. In preparation.

FISH TEMPERATURE DATA

Species: White crappie, Pomoxis annularis

'References on following page.

White crappie

References

1. Gammon, J. R. 1973. The effect of thermal input on the populations of fish and macroinvertebrates in the Wabash River. Purdue Univ. Water Resources Research Center, Lafayette, Indiana. Tech. Rept. 32. 106 p.
2. Breder, C. M., and D. E. Rosen. 1966. Modes of Reproduction in Fishes. Nat. History Press, Garden City, New York. 941 p.
3. Goodson, Lee F. 1966. Crappie. In: Inland Fisheries Management, A. Calhoun, ed. Calif. Dept. "Fish and Game. pp. 312-332.
4. Kleiner, C. F., and K. E. F. Hokanson. Effects of constant temperature on growth and mortality rates of juvenile white crappie, Pomoxix annularis Rafinesque. Unpublished data. U. S. Environmental Protection Agency; Duluth, Minnesota.
5. Siefert, R. E. 1968. Reproductive behavior, incubation, and mortality of eggs and post larval food selection in the white crappie. Trans. Amer. Fish. Soc. 97:252-259.
6. Peterson, S. E., R. M. Schutsky, and S. E. Allison. 1974. Temperature preference, avoidance, and shock experiments with freshwater fishes and crayfishes. Ichthyological Associates, Inc., Drumore; Pennsylyania. Bulletin 10.

FISH TEMPERATURE DATA

Species: White perch, Morone americana

[^23]
White perch

References

1. Holsapple, J. G., and L. E. Foster. 1975. Reproduction of white perch in the lower Hudson River. New York Fish and Game J. 22:122-127.
2. Meldrim, J. W., J. J. Gift, and B. R. Petrosky. 1974. Supplementary data on temperature preference and avoidance responses and shock experiments with estuarine fishes and macroinvertebrates. Ichthyological Associates, Inc., Middletown, Delaware. 56 p. mimeo.
3. Sheri, A. N., and G. Power. 1968. Reproduction of white perch, Roccus comericana, in the bay of Quinte, Lake Ontario. J. Fish. Res. Bd. Canada. 25:2225-2231.

FISH TEMPERATURE DATA

Species: White sucker, Catostomus conmersoni

${ }^{1}$ References on following page.

References

1. McCormick, J. H., B. R. Jones, and K. E. F. Hokanson. 1976. Temperature effects on embryo development, early growth, and survival of the white sucker, Catostomus comersoni (Lacepede). J. Fish. Res. Bd. Canada. In press.
2. Carlander, K. D. 1969. Handbook of Freshwater Fishery Biology, Val. 1. Life History Data on Freshwater Fishes of the United States and Canada, Exclusive of the Perciformes. Iowa State Univ. Press, Ames Iowa. 752 p..
3. Brett, J. R. 1944. Some lethal temperature relations of Algonquin Park fishes. Publ. Ont. Fish. Res. Lab. 63:1-49.
4. Horak, D. L., and H. A. Tanner. 1964. The use of vertical gill nets in studying fish depth distribution: Horsetooth Reservoir, Colorado. Trans. Amer. Fịsh. Soc. 93:137-145.
5. Webster, D. A. 1941. The life history of some Connecticut fishes. In: A Fishery Survey of Important Connecticut Lakes. Conn. Geol. and Nat. Hist. Survey Bull. No. 63, Hartford. pp. 122-227.
6. Raney, E. C. 1943. Unusual spawning habitat for the common white sucker Catostomus c. commersonii. Copeia. 4:256.

FISH TEMPERATURE DATA

Species: Yellow perch, Perca flavescens

I. Lethal threshold:	acclimation temperature	larvae	le	adult	reference ${ }^{\text {' }}$
Upper	5			21	1
	10(1), 10(4)	10(4)*	-	25(1)	1,4
		19(4)*	-	$28(1)$	1,4
	25			32	10
Lower	25.	swimup	9		10
II. Growth:	larvae	juvenile		gdult	
Optimum and [range]			$\frac{28}{(26-30)(11)}$	[13(6)-20(7)]	$\frac{11}{6,7,11}$
III. Reproduction:	optimum		range	month(s)	
Migration					
Spawning	12(3)		2(5)-15(3)	Mar-June(3)	3.5
and hatch	$\frac{10 \mathrm{up}}{\text { to } 20} \text { day }$		7-20		4
IV. Preferred:	acclimation temperature	larvae	e juvenile	adult	
	Winter			21(2)	2
	Summer		24		2
	24		20-23	18-20	9
	$\begin{array}{r} 25 \\ 7 \\ \hline \end{array}$		$\begin{array}{r} 22 \\ 19 \\ \hline \end{array}$		$\begin{aligned} & 8 \\ & 8 \end{aligned}$
Ref	,		20		8

References

1. Hart, J. S. 1947. Lethal temperature relations of certain fish of the Toronto region. Trans. Roy. Soc. Can., Sec. 5. 41:57-71.
2. Ferguson, R. G. 1958. The preferred temperature of fish and their midsummer distribution in temperate lakes and streams. J. Fish. Res. Bd. Canada. 15:607-624.
3. Jones, B. R., K. E. F. Hokanson, and J. H. McCormick. 1976. Winter temperature requirements for maturation and spawning of yellow perch, Perca flavescens (Mitchell). U. S. Environmental Protection Agency, Duluth, Minnesota. In preparation.
4. Hokanson, K. E. F:, and C. F. Kleiner. 1973. The effects of constant and rising temperatures on survival and developmental rates of embryonic and larval yellow perch, Perca flavescens (Mitchell). In: Early Life History of Fish. Proceedings of an International Symposium, May 17-23, 1973, Dunstaffnage Marine Research Lab., Oban, Scotland. pp. 437-448.
5. Muncy, R. J. 1962. Life history of the yellow perch, Perca flavescens, in estuarine waters of Severn River, a tributary of Cheșapeake Bay, Maryland. Chesapeake Sci. 3:143-159.
6. Coble, D. W. 1966. Dependence of total annual growth of yellow perch on temperature. J. Fish. Res. Bd. Canada. 23:15-20.
7. Weatherley, A. H. 1963. Thermal stress and interrenal tissue in the perch, Perca fluviatilus (Linnaeus). Proc. Zool. Soc., London. 141:527-555.
8. Meldrim, J. W., J. J. Gjft, and B. R. Petrosky. 1974. Supplementary data on temperature preference and avoidance responses and shock experiments with estuarine fishes and macroinvertebrates. Ichthyological Associates, Inc., Middletown, Delaware. 56 p. mimeo.
9. McCauley, R. W., and L. A. A. Read. 1973. Temperature selections by juvenile and adult yellow perch (Perea flavescens) acclimated to 24 C. J. Fish. Res. Bd. Canada. 30:1253-1255.
10. Hart, J. S. 1952. Geographic variations of some physiological and morphological characters in certain freshwater fish. Univ. Toronto, Toronto, Ontario. Biology Series No. 60. 78 p.
11. McCormick, J. H. 1976. Temperature effects on growth of young yellow perch, Perca flavescens (Mitchell). U. S. Environmental Protection Agency, Duluth, Minnesota. Report EPA-600/3-76-057.

Office of Research and Development
Technical Information Staff
Cincinnati, Ohio 45268

OFFICIAL BUSINESS

PENALTY FOR PRIVATE USE. $\$ 300$
AN EQUAL OPPORTUNITY EMPLOYER

POSTAGE AND FEĖS PAID
U.S. ENVIRONMENTAL PROTECTION AGENCY

EPA-335

Special Fourth-Class Rate

Book
H. I. Giesecke, (DS) 0001

IIbrarian $E P A$
2200 Churchill Ra
springfield. IL 62706

If your address is incorrect, please change on the above label, tear off; and return to the above address.
If you do not desire to continue receiving this technical report series, CHECK HERE \square; tear off label, and return it to the above address.

[^0]: ${ }^{\text {a }}$ Calculated according to equation:
 maximum weekly average temperature for growth $=$ optimum for growth
 $+(1 / 3)$ (ultimate incipient lethal temperature - optimum for growth).
 based on: ceaperature $(* C)=(\log$ time $(n i n)-a) / b-2^{*} C$, accilmation
 at the maximum weekly average temperature for sumater growth, and data in
 chaged on data for larvae.

[^1]: The optimum or mean of the range of apawing temperntures reported for the species.
 b The upper temperature for successful incubation and hatching reported for the species.
 c Upper temperature for apauming.

[^2]: a If a species had required a winter chill period for gamete maturation or egg incubation, receiving-water criteria would also be required.
 b No data available for the'slightly more sensitive white crappie.

[^3]: From: National Academy of Sciences (1973). See pp. 410-419, 444-445, Appendix II-C.

[^4]: - Il is assumed in this table that the aeclimation temperature reported is a true acelimation in the contort of Breft (1952). 14

 Wumber of median resistanca timas used for calculatine regression equation.

[^5]: c Corretation coeficient (perfoct fit of all data points to the regression line $=1.0$).
 $d=$ Ineipient lethal temperature of Fry, et al., (1946).ns

[^6]: 'References on following page.

[^7]: 'References on following page.

[^8]: 'References on following page.

[^9]: 'References on following page.

[^10]: ${ }^{1}$ References on following page.

[^11]: 'References on following page.

[^12]: 'References on following page.

[^13]: 'References on following page.

[^14]: 'References on following page.

[^15]: 'References on following page.

[^16]: ${ }^{1}$ References on following page.

[^17]: ${ }^{1}$ References on following page.

[^18]: 'References on following page.

[^19]: 'References on following page.

[^20]: 'References on following page.

[^21]: ${ }^{1}$ References on following page.

[^22]: 'References on following page.

[^23]: ${ }^{1}$ References on following page.

